УДК 553.9

DOI: 10.31660/0445-0108-2024-3-24-32

Проблематика изучения месторождений с трансграничными территориями на примере Красноленинского нефтегазоконденсатного месторождения (в порядке обсуждения)

А. А. Кунгуров*, Л. Х. Алимчанова

OOO «Тюменский нефтяной научный центр», Тюмень, Россия *aakungurov@tnnc.rosneft.ru

Аннотация. Территориальная принадлежность одного месторождения разным недропользователям влечет за собой ряд проблем, возникающих при подсчете запасов углеводородного сырья, обосновании подсчетных параметров, что связано с отсутствием полной информации по трансграничному месторождению у одного владельца недр.

Целью работы — демонстрация проблем моделирования и подсчета запасов трансграничных месторождений и предложения по их решению.

В статье вкратце изложена история геологоразведочных работ на Красноленинском месторождении с последующей историей моделирования и подсчета запасов. Показана разница в корреляции продуктивных пластов. Рассмотрены различные способы оконтуривания залежей в пределах участков недропользования. Перечислены сложности моделирования вследствие наличия нескольких недропользователей одного трансграничного месторождения. Приведены конкретные примеры проблем согласования моделей и подсчета запасов двух недропользователей. Обозначена проблема объединения нескольких месторождений по результатам геологоразведочных работ. Сформулированы выводы о преимуществах единой модели трансграничных месторождений и пользе их для государства.

Решение проблемы — это обмен накопленной геолого-промысловой информацией между соседними недропользователями и договоренность о совместных действиях по изучению месторождения, в том числе работе по подсчету запасов, по проектным решениям.

В результате получим единую геологическую модель месторождения, одинаковые подходы к проведению категорий, размещению добывающего фонда, корректное распределение добычи, решение вопросов с налоговыми органами.

Ключевые слова: углеводородное сырье, подсчет запасов, трансграничные месторождения, Красноленинское месторождение

Для цитирования: Кунгуров, А. А. Проблематика изучения месторождений с трансграничными территориями на примере Красноленинского нефтегазоконденсатного месторождения (в порядке обсуждения) / А. А. Кунгуров, Л. Х. Алимчанова. – DOI 10.31660/0445-0108-2024-3-24-32 // Известия высших учебных заведений. Нефть и газ. – 2024. – № 3. – С. 24–32.

Problems of studying deposits with cross-border territories: a case study of the Krasnoleninskoye oil and gas condensate field (in the form of a discussion)

Aleksei A. Kungurov*, Luiza Kh. Alimchanova

Tyumen Petroleum Research Center LLC, Tyumen, Russia *aakungurov@tnnc.rosneft.ru

Abstract. The territorial affiliation of one field to different subsurface users gives rise to a number of problems when calculating hydrocarbon reserves and justifying calculation parameters. This is due to the lack of complete information on a cross-border field from one owner of the subsoil.

The aim of the article is to demonstrate the problems of modeling and calculating reserves of cross-border deposits and proposals for their solution.

The article briefly describes the history of geological exploration at the Krasnoleninskoye oil and gas condensate field and the history of modeling and calculating reserves. The difference in the correlation of productive layers is shown. Various methods of delineation of deposits within subsurface use sites are considered. The difficulties of modeling due to the presence of several subsurface users of one cross-border deposit are listed. Specific examples of problems of matching models and calculation of reserves of two subsurface users are given. The problem of combining several fields based on the results of geological exploration is outlined. Conclusions are drawn about the advantages of a single model of cross-border deposits and their benefits for the state.

The solution to the problem is the exchange of accumulated geological and commercial information between neighboring subsoil users and an agreement on joint actions to study the field, including work on estimating reserves and on design solutions.

Consequently, a unified geological model of the deposit will be established, along with uniform methodologies for classification, mining fund allocation, and the optimal distribution of production. Additionally, the resolution of tax authority-related issues will be facilitated.

Keywords: hydrocarbon raw materials, reserves estimation, cross-border deposits, Krasnoleninskoye field

For citation: Kungurov, A. A., & Alimchanova, L. Kh. (2024). Problems of studying deposits with cross-border territories: a case study of the Krasnoleninskoye oil and gas condensate field (in the form of a discussion). Oil and Gas Studies, (3), pp. 24-32. (In Russian). DOI: 10.31660/0445-0108-2024-3-24-32

Введение

Логика любых геологоразведочных работ всегда одинакова: исследование новых территорий начинается от некой отправной точки и двигается в сторону неизведанного. Рассмотрим это на примере Красноленинского месторождения.

Детальное изучение геологического строения Красноленинского нефтегазоносного района, где расположен рассматриваемый лицензионный участок, началось с 50-х годов прошлого века.

В 1953 году Западно-Сибирской аэромагнитной экспедицией выполнялась магниторазведка масштаба 1:1 000 000. По ее результатам были выделены зоны преобладания положительных и отрицательных магнитных полей.

В 1955 году Ханты-Мансийской партией № 37/35 была проведена магниторазведка масштаба 1:200 000, и на фоне региональных полей выделены локальные положительные и отрицательные магнитные аномалии.

В 1956—1957 годах гравиметрическими партиями Ханты-Мансийской нефтеразведочной экспедиции по результатам проведенной гравиразведки была составлена схема тектонического районирования фундамента, впервые был выделен Красноленинский свод.

Сейсмические исследования на Красноленинском своде начаты в 1957 году, по результатам которых за период 1957–1969 гг. были составлены структурные карты масштаба 1:200 000 по опорным отражающим горизонтам А и Б и выявлены локальные поднятия (Каменное, Ай-Торское, Елизаровское, Сиговское, Пальяновское, Ем-Еговское и др.), перспективные на обнаружение нефти и газа. В дальнейшем строение локальных поднятий уточнялось детальными сейсмическими исследованиями масштаба 1:50 000.

Буровые работы в Красноленинском нефтегазоносном районе впервые были начаты в 1959 году. В том же году при разбуривании Мало-Атлымского поднятия было зафиксировано первое нефтепроявление в разрезе нижне-среднеюрских отложений (тюменская свита).

В 1962 году первая промышленная нефть была выявлена на Каменной площади и открыто Красноленинское месторождение, а в 1963 году установлены прямые признаки нефтеносности в пределах Ай-Торской, Лорбинской, Ем-Еговской, Елизаровской и Пальяновской площадей.

Объект и методы исследования

В настоящее время Красноленинское месторождение включает в себя целый ряд площадей, приуроченных к одноименным поднятиям. К ним относятся Каменное, Ай-Торское, Ем-Еговское, Пальяновское, Елизаровское, Ингинское, Лорбинское (рис. 1). Талинская площадь является исключением, потому что на ней продуктивными являются отложения шеркалинской свиты, заполняющие глубокие прогибы между крупными поднятиями и склоны Красноленинского свода.

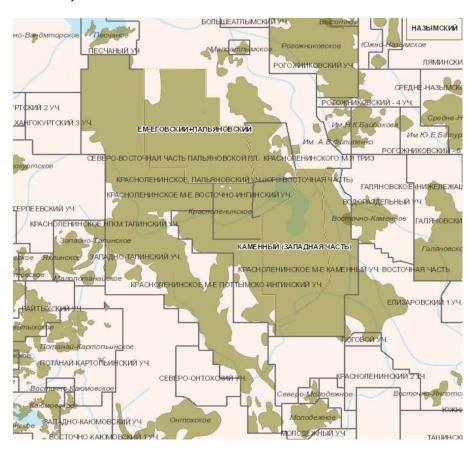


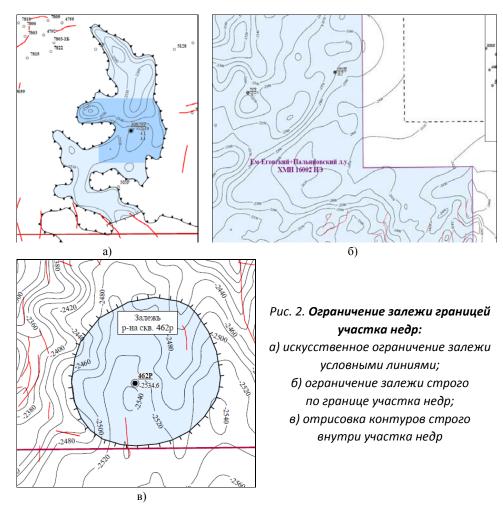
Рис. 1. **Обзорная карта Красноленинского месторождения** на текущий момент

Таким образом, Красноленинское месторождение охватывает широкий диапазон продуктивности — от доюрского фундамента до викулов-

ских отложений и характер насыщения открытых залежей — нефтяные и нефтегазоконденсатные. К слову, новые залежи по результатам бурения скважин открываются и по сей день.

В силу разных причин запасы Красноленинского месторождения считались по площадям. Мало того, раньше запасы могли числиться на Государственном балансе, но не проходили экспертизу Государственной комиссии по запасам Роснедра (ФБУ «ГКЗ»): подсчеты запасов готовились и утверждались ГКЗ только на основные продуктивные пласты, остальное проходило территориальные комиссии по запасам в оперативном порядке [1].

Единой модели (как и единого подсчета запасов) Красноленинского месторождения никогда не создавалось. Даже единая корреляция разрезов скважин отсутствует, несмотря на то, что большей частью лицензий на участки недр месторождения владел один недропользователь. Так, на Ем-Еговской площади пласты викуловской свиты проиндексированы как ВК1-3, на Каменной площади — ВК1 и ВК2-3, на Талинской — ВК1 (таблица).


Номенклатура продуктивных пластов Красноленинского месторождения

Ем-Еговская площадь	Каменная площадь	Талинская площадь
BK1-3	ВК1	ВК1
	ВК2-3	_
ЮК0	ЮК0	ЮК0
ЮК1	ЮК1	ЮК1
_	П	_
ЮК2-9	ЮК2-9	ЮК2
		ЮК3
		ЮК4
		ЮК5
		ЮК6
	БГ	ЮК7
		ЮК8-9
_	_	ЮК10/0
ЮК10	БГ2	ЮК10
_	_	ЮК11
дюк	дюк	дюк

Еще один пример — на Каменной площади выделяется базальный пласт, который на Талинской площади переходит в пласты шеркалинской свиты, на Ем-Еговской площади вообще не выделяется, а объемы пласта находятся в пределах тюменской свиты. Самыми проблематичными видятся модели пластов тюменской свиты — на Ем-Еговской и Каменной площадях пласт объединен в ЮК2-9, водонефтяной контакт в котором не вскрыт, на

Талинской площади пласты смоделированы раздельно (ЮК2, ЮК3 и т. д.), примерно в половине залежей контакт вскрыт, вода есть в каждом пласте, поэтому объединить так, как сделано на соседних пластах, невозможно [2, 3].

В начале 1990-х годов вследствие реформы недропользования начали выделяться участки недр, на которые оформлялись лицензии на поиск, разведку и добычу полезных ископаемых. Оставим за скобками не всегда прозрачные принципы, по которым проводились границы участков недр, факт в том, что зачастую эти границы разделили единые по геологическому строению залежи УВС. Работы по ПЗ (полный подсчет запасов)/ОПЗ (оперативный подсчет запасов) теперь проводятся в пределах участков недр, и, по сути, на территории Красноленинского месторождения сейчас множество частей месторождения, живущих своей отдельной от других жизнью. Существует множество примеров того, как геологическая модель правится для того, чтобы не выйти за пределы участка недр (рис. 2).

Отсутствие единой модели Красноленинского месторождения и наличие участков недр со значительным количеством недропользователей приводят к следующим сложностям.

- 1. Нет единой корреляции разрезов скважин.
- 2. Нет единой петрофизической модели. Особенно актуально для мелких площадей, где зачастую не хватает собственных данных для построения зависимостей.
 - 3. Нет единой сейсмической модели.
- 4. Зачастую залежи нетрадиционных коллекторов или с невскрытым уровнем водонефтяного контакта ограничиваются границей участка недр (пласты ЮК0, ЮК1, ЮК2-9).
 - 5. Нет единой стратегии геологоразведочных работ.
 - 6. Нет единых технологий разработки продуктивных залежей.
- 7. Нет единого исполнителя работ по моделированию и ПЗ. У каждого недропользователя свои руководящие документы (РД) по моделированию, зачастую не всегда согласующиеся между собой.
- 8. Затрудненное согласование контуров, запасов, параметров разработки при ПЗ/ОПЗ/ПТД (проектно-технологический документ).

На последнем пункте хочется остановиться поподробнее. Как уже сказано выше, единого ПЗ не было. Соответственно, все ПЗ сделаны каждый сам по себе, в разное время, с разной корреляцией, разными подсчетными параметрами, на разных стадиях изученности. При любом изменении запасов залежей, разделенных границами участков недр, требуется согласовывать изменения моделей с другими недропользователями. В силу вышеперечисленных причин зачастую это невозможно или результат некорректен.

Конкретный пример по Красноленинскому месторождению. В 2017 году на Каменной площади в пределах Каменного (западная часть) участка недр выполнен ПЗ, в котором пласты тюменской свиты объединены в единый пласт ЮК2-9 [4]. На соседнем Каменном (восточная часть) участке недр пласты числились раздельно: ЮК2, ЮК3 и т. д. Сопоставить подсчетные параметры и контура невозможно. Мало того, на пласте БГ шаги сеток оказались разными, состыковать их не удалось — разные размеры квадратов. Так сейчас и числится на Госбалансе — несимметричные квадраты (рис. 3 а).

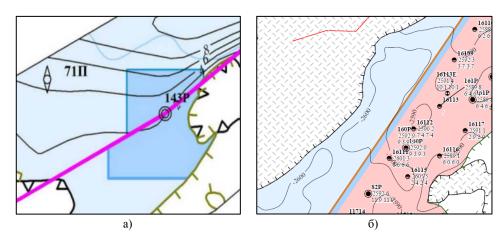


Рис. 3. **Нестыковка категорий запасов:** а) вследствие разных шагов сеток; б) вследствие разной степени разбуривания

Еще встречаются примеры нестыковок границ категорий из-за не до конца реализованной сетки скважин, когда с одной стороны границы участка недр категории A, а с другой — B2 (рис. 3 б).

Самое парадоксальное, что в 2019 году соседние недропользователи выполнили свой ПЗ [5]. Получилось, что недропользователь западной части Каменной площади в 2017 году стыковался на границе участка недр с предыдущей моделью восточной части, благополучно это сделал, а затем недропользователь восточной части в 2019 году стыковался с моделью 2017 года западной части (а по факту со своей старой моделью). Граница участка недр стала определяющей положение контуров, на ней остались точки, через которые проходят контура текущей рисовки (рис. 4).

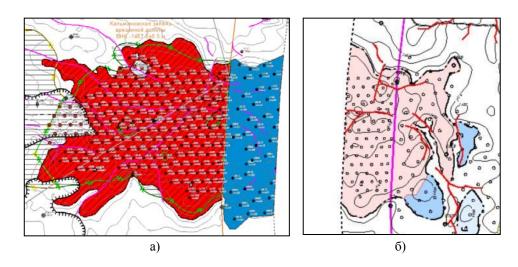


Рис. 4. **Согласование контуров по результатам двух П3:** а) 2017 г., П3 западной части; б) 2019 г., П3 восточной части

Еще один аспект, который напрямую не касается проблем трансграничных территорий, но не менее важен. Это месторождения, ранее открытые как отдельные, но в процессе изучения выросшие в размерах и близкие к слиянию (помним про движение от известного к неизвестному). На примере того же Красноленинского месторождения и Западно-Талинского и Яхлинского месторождений (см. рис. 1): в настоящий момент сводные контура месторождений уже пересекаются в плане, и в идеале их надо объединять с Красноленинским на уровне площадей наравне с Каменной, Ем-Еговской и т. д. По сути получается, что Ем-Еговское, Пальяновское, Каменное поднятия были изначально в составе Красноленинского месторождения (хотя и не соприкасались между собой), а Западно-Талинское и Яхлинское — нет, при этом разделяющая их Талинская площадь опять же всегда была в составе Красноленинского месторождения.

Результаты и выводы

- 1. Критически важно создавать одну единую модель месторождения. Особенно это касается крупных и уникальных месторождений, где изменение пористости на 1 % вследствие применения множества петрофизических моделей автоматически приводит к изменению запасов на млн т нефти.
- 2. Исполнитель работ должен быть один, желательно независимый от всех недропользователей, чтобы он смог найти золотую середину всех РД недропользователей либо вообще работал только по РД ГКЗ и Центральной комиссии по разработке Роснедра (ЦКР). В идеале государственное предприятие.

Польза для государства следующая.

- Модели пластов и, соответственно, запасы не зависят от держателя лицензии на участки недр.
- Оперативно выявляются проблемные места участков недр (пересечения, промежутки между границами).
- Корректно распределяется добыча полезных ископаемых по участкам недр.
- Все результаты моделирования напрямую попадают в Госбаланс, Российский геологический фонд, территориальные фонды, различные базы данных по недропользованию.
- Отпадает необходимость согласования трансграничных месторождений, границ залежей, категорий запасов.

Список источников

- 1. Отчет «Подсчет запасов нефти и растворенного газа Каменной площади Красноленинского месторождения Октябрьского района Тюменской области по состоянию на 01.04.90 года, Ханты-Мансийский автономный округ» / В. К. Рыбак, Н. И. Шумило, М. Ф. Шарипова [и др.]. Тюмень, 1990. Текст: непосредственный.
- 2. Отчет «Геологический отчет о пересчете запасов нефти и растворенного газа и ТЭО КИН Ем-Еговского + Пальяновского лицензионного участка Красноленинского нефтегазоконденсатного месторождения (западная часть) Тюменской области, ХМАО Югра по состоянию на 01.01.2015» / А. Б. Алчина, С. А. Корниенко [и др.]. Тюмень, 2015. Текст : непосредственный.
- 3. Отчет «Подсчет запасов нефти и растворенного газа на основе геолого-технологической модели Красноленинского месторождения Ханты-Мансийского АО Тюменской области (в пределах лицензионной деятельности ОАО «ТНК-НЯГАНЬ») Каменная площадь» / Т. Ф. Дьяконова, С. Б. Денисов, С. И. Билибин [и др.]. Москва, 2003. Текст: непосредственный.
- 4. Отчет «Подсчет геологических запасов нефти, растворенного газа, сопутствующих компонентов Красноленинского нефтегазоконденсатного месторождения в пределах Каменного (западная часть) ЛУ» / Т. Н. Смагина, А. А. Кунгуров, Л. Х. Алимчанова [и др.]. Тюмень, 2017. Текст: непосредственный.

5. Отчет «Подсчет геологических запасов нефти, растворенного газа и компонентов Красноленинского нефтегазоконденсатного месторождения в пределах Каменного ЛУ (восточная часть)» / Г. В. Кузнецова, В. С. Дручин, С. Ф. Панов [и др.]. – Тюмень, 2019. – Текст : непосредственный.

References

- Rybak, V. K., Shumilo, N. I., Sharipova, M. F. [et al.]. (1990). Otchet "Podschet zapasov nefti i rastvorennogo gaza Kamennoy ploshchadi Krasnoleninskogo mestorozhdeniya Oktyabr'skogo rayona Tyumenskoy oblasti po sostoyaniyu na 01.04.90 goda, Khanty-Mansiyskiy avtonomnyy okrug". Tyumen. (In Russian).
- Alchina, A. B., Kornienko, S. A. [et al.]. (2015). Otchet "Geologicheskiy otchet o pereschete zapasov nefti i rastvorennogo gaza i TEO KIN Em-Egovskogo + Pal'yanovskogo litsenzionnogo uchastka Krasnoleninskogo neftegazokondensatnogo mestorozhdeniya (zapadnaya chast') Tyumenskoy oblasti, Khmao - Yugra po sostoyaniyu na 01.01.2015". Tyumen. (In Russian).
- D'yakonova, T. F., Denisov, S. B., Bilibin, S. I. [et al.]. (2003). Otchet 3. "Podschet zapasov nefti i rastvorennogo gaza na osnove geologo-tekhnologicheskoy modeli Krasnoleninskogo mestorozhdeniya Khanty-Mansiyskogo AO Tyumenskoy oblasti (v predelakh litsenzionnoy deyatel'nosti OAO "TNK-NYAGAN") Kamennaya ploshchad". Moscow. (In Russian).
- 4. Smagina, T. N., Kungurov, A. A., Alimchanova, L. Kh., Novopashina, V. L., Tashlanova, T. V., Kuznetsov, A. G. [et al.]. (2017). Otchet "Podschet geologicheskikh zapasov nefti, rastvorennogo gaza, soputstvuyushchikh komponentov Krasnoleninskogo neftegazokondensatnogo mestorozhdeniya v predelakh Kamennogo (zapadnaya chast') LU". Tyumen. (In Russian).
- Kuznetsova, G. V., Druchin, V. S., Panov, S. F. [et al.]. (2019). Otchet "Podschet geologicheskikh zapasov nefti, rastvorennogo gaza i komponentov Krasnoleninskogo neftegazokondensatnogo mestorozhdeniya v predelakh Kamennogo LU (vostochnaya chast')". Tyumen. (In Russian).

Сведения об авторах / Information about the authors

Кунгуров Алексей Анатольевич, менеджер по геологии, ООО «Тюменский нефтяной научный центр», г. Тюмень, aakungurov@tnnc.rosneft.ru

Алимчанова Луиза Хакимчановна, начальник отдела подсчета запасов и ОПЗ по Западной Сибири, ООО нефтяной «Тюменский научный центр», г. Тюмень

Aleksei A. Kungurov, Geology Manager, Tyumen Petroleum Research Center LLC, aakungurov@tnnc.rosneft.ru

Luiza Kh. Alimchanova, Division Head of the West Siberia Reserves Estimation, Tyumen Petroleum Research Center LLC

Статья поступила в редакцию 05.03.2024; одобрена после рецензирования 02.05.2024; принята к публикации 07.05.2024.

The article was submitted 05.03.2024; approved after reviewing 02.05.2024; accepted for publication 07.05.2024.