Геология, поиски и разведка месторождений нефти и газа

УДК 624.131.431.2

АНАЛИЗ ПАРАМЕТРА ПОРИСТОСТИ С ИСПОЛЬЗОВАНИЕМ ЭЛЕКТРОФАЦИЙ И ТИПА ГЛИНИСТОСТИ

ANALYSIS OF THE POROSITY PARAMETER USING ELECTROFACIES AND TYPE OF CLAY

H. А. Анпов, М. М. Алиев, С. Р. Бембель, Г. В. Казанцев N. A. Aipov, M. M. Aliev, S. R. Bembel, G. V. Kazantsev

Тюменский индустриальный университет, г. Тюмень

Ключевые слова: параметр пористости; фациальные условия; тип глинистости; Западная Сибирь Key words: porosity parameter; facial conditions; type of clay; Western Siberia

Прогнозные и фактические показатели в области подсчета запасов и добычи углеводородного сырья зависят, помимо качества отбора образцов и постановки экспериментов, и от степени приближения результатов петрофизических исследований к реальной обстановке. Зачастую пористость на плоскостях сопоставления открытой пористости (K_n) с параметром пористости (P_n) и K_n с данными геофизических исследований скважин (ГИС) не дифференцируется адекватно. Подобное несоответствие между приведенными параметрами объясняется по меньшей мере двумя причинами.

Во-первых, при сводном анализе зависимостей K_n с петрофизическими данными и данными ГИС региональные факторы, оказывающие порой определяющее влияние на петрофизические свойства пород, геофизиками (да и петрофизиками), по существу, не учитываются. Прежде всего, это такие признаки, как тип глинистости (структурированный, слоистый, рассеянный), удельная поверхность порового канала, величина его извилистости, а также форма упаковки частиц породы и степень зрелости горных пород [1]. Все эти параметры не входят в стандартный набор исследований в лабораториях вследствие сложности и дефицита времени их определения. Тем не менее, характер тока жидкости и электрического заряда в заглинизированных породах во многом обусловливается именно комбинацией этих признаков. Величину и вариацию данных характеристик определяют условия их осадконакопления. Различные части (элементы) одного и того же пласта (объекта) по латерали могут принадлежать разным геологическим телам, которые формировались в неодинаковых палеогеографических условиях со своей динамикой осадконакопления, окислительно-восстановительной и кислотно-щелочной средой. Различная обстановка литогенеза наделила горную породу свойствами, которые характерны только данным условиям осадконакопления. Исключением не являются и петрофизические характеристики, в том числе и электрические.

Во-вторых, плохой отбор образцов керна в пределах пласта (объекта) для лабораторных исследований также влияет на несоответствие данных K_n с данными ГИС. Можно согласиться, что совершенно безукоризненный отбор образцов невозможен. Однако петрофизики обязаны обратить внимание специалистов, использующих результаты лабораторных исследований, на бессистемный отбор и исследование образцов.

Цель данной работы — попытка выявления природы вариации только зависимости $P_n = f(K_n)$, которая определена для пласта BB_1 месторождения X .

Анализ K_n и P_n выполнялся с учетом особенностей признакового и геологического пространства. В признаковом пространстве, помимо собственно пористости, рассматривается тип глинистости, а также в интегральном виде — удельная поверхность поровых каналов, их извилистость, форма упаковки структурных породообразующих элементов; в геологическом пространстве рассматриваются фации. Расчленение геологической среды (ГС) по вещественному составу и условиям формирования в аспекте региональной петрофизики представляет определенные трудности в методическом плане, требует значительных материальных и финансовых затрат. Поэтому, исходя из практических задач, геологические тела выделялись на основе фаций, которые, в свою очередь, диагностировались с использованием формы кривых метода потенциалов самопроизвольной поляризации (ПС). Методика определения фаций с использованием данных метода ПС (далее — электрофаций) для решения геологических вопросов детально расписана в известной монографии В. С. Муромцева [2].

Анализ $P_n = f(K_n)$ выполнялся для пласта FB_1 (условное название) по скв. 1, 2, 3 и 4 (номера скважин приводятся в условных единицах).

Отложения пласта в пределах скв. 1 представлены светло-серым среднемелкозернистым и мелкозернистым алевритистым песчаником с глинистым и карбонатно-глинистым цементом. Текстура преимущественно массивная, с редкими косыми прерывистыми и горизонтальными намывами углисто-слюдистого материала.

Коллектор в районе скв. 2 состоит из серого мелкозернистого алевритистого песчанка с массивной текстурой, с частыми намывами углисто-слюдистого материала и редкими прослоями темно-серой аргиллитоподобной глины толщиной 0,5—1,0 см. Встречаются прослои крепко сцементированного карбонатного песчаника с линзами углефицированной древесины. Текстура горизонтальная, прерывистая косоволнистая, линзовидная с элементами оползания и массивная. Отмечаются единичные ходы илоядных организмов.

Породы пласта БВ₁, вскрытые скв. 3, представляют собой светло-серый мелкозернистый алевритистый песчаник с намывами углисто-слюдистого материала и прослоями серой аргиллитоподобной глины толщиной от 0,1 до 4 см. Текстура прерывистая, косая, линзовидная. Наблюдаются прослои светло-серого мелкозернистого крепко сцементированного карбонатного песчаника с частыми намывами углисто-слюдистого материала.

Пласт FB_1 в разрезе скв. 4 сложен мелкозернистым песчаником с подчиненными прослоями алевритоглинистых пород. В единичных прослоях песчаник переходит в крупнозернистый алевролит, сцементированный глинистым или глинистокарбонатным цементом. Текстура горизонтальная, мелкая косая (с пологими углами наклона), прерывистая, обусловлена концентрацией углисто-слюдистого и глинистого материала по плоскостям наслоения. Нередко седиментационная слоистость нарушена ходами илоедов или процессами взмучивания незатвердевшего осадка, что, в определенной степени, свидетельствует о мелководном генезисе отложений.

Состав и облик пород пласта $\mathrm{5B_1}$ косвенно свидетельствуют о том, что палеоусловия осадконакопления в районах дислокации скв. 1, 2, 3 и 4 в той или иной степени отличались друг от друга. Различие в обстановке формирования ГС предопределило неоднородность в петрофизических свойствах пород.

На рисунке 1 представлено сопоставление K_n и P_n по 4 скважинам (для удобства восприятия информации графики представлены не в билогарифмическом масштабе). Точки, представляющие K_n и P_n , описываются четырьмя однотипными степенными уравнениями регрессии. Коэффициенты и показатели степени при K_n отличаются значительно.

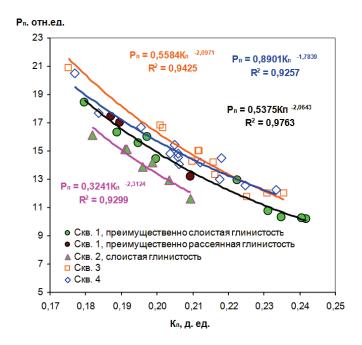
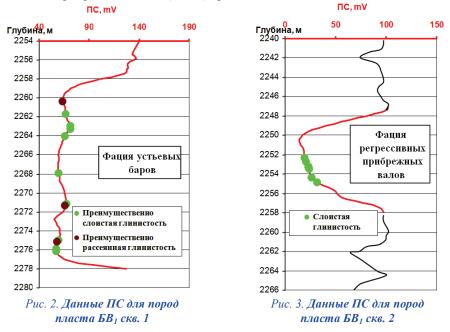
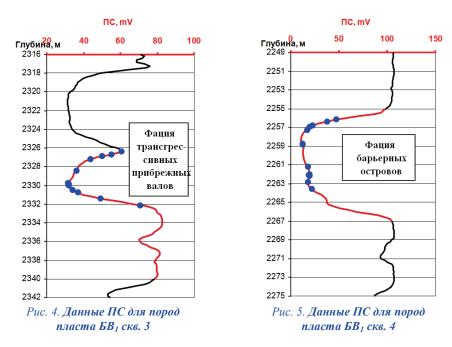
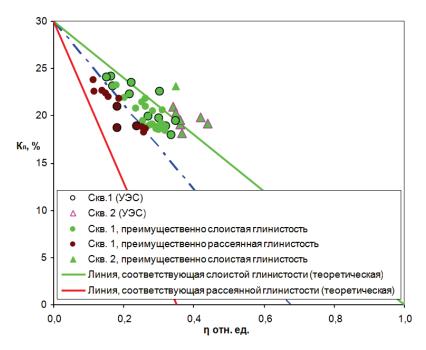




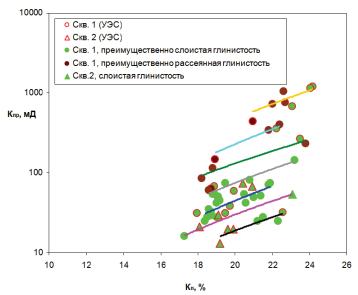
Рис. 1. Сопоставление параметра пористости (P_n) и открытой пористости (K_n) для пород пласта EB_1 скв. 1, 2, 3 и 4

Постараемся осмыслить, почему в пределах одного и того же пласта по латерали связь между K_n и P_n столь различна. Данные ПС указывают, что форма кривых в пределах исследуемого пласта существенным образом отличается от скважины к скважине. Из многочисленных отечественных и зарубежных опубликованных работ известно, что форма диаграммы ПС тесно связана с обстановкой осадконакопления и различными геологическими параметрами. Выполнив анализ формы кривых ПС для пласта B_1 , удалось выявить 4 электрофации (рис. 2–5): фация устьевых баров (скв. 1), фация регрессивных прибрежных валов (скв. 2), фация трансгрессивных прибрежных валов (скв. 4).

Известно также, что тип глинистости, количество и состав глины нередко оказывают решающее значение на величину электрического сопротивления пород. Однако до настоящего времени всестороннему изучению глинистости пород нефтяных месторождений не придают должного значения.

На рисунке 6 показан результат массового определения типа глинистости в скв. 1 и скв. 2. По приведенным данным мы видим, что в скв. 1 преобладает преимущественно рассеянная глина, в скв. 2 — преимущественно слоистая глина.




Рис. 6. Сопоставление относительной глинистости (η) и открытой пористости (K_n) для пород пласта Б B_1 скв. 1 и 2

При одном и том же значении коэффициента глинистости (K_{zn}) емкостные свойства породы определяются следующим образом: при слоистой глинистости $K_n = K_n \ max \cdot (1 - K_{zn})$, при рассеянной — $K_n = K_n \ max - K_{zn}$, при структурной — $K_n = K_n \ max \ [3]$.

При равных емкостных свойствах порода со слоистой глинистостью обладает лучшей способностью пропускать электрические заряды, что подтверждается графиками (см. рис. 1). Вместе с тем фильтрационные свойства пород пласта скв. 2 заметно хуже, что будет показано ниже.

Для анализа сопротивления, пористости и проницаемости в пределах пласта в скв. 1 и скв. 2 выделены петрофизические типы пород (рис. 7). Для этой цели использовались законы Пуазейля, Дарси, Козени — Кармана, объясняющие зависимость проницаемости от пористости.

На рисунке 7 приведено сопоставление газопроницаемости (K_{np}) и открытой пористости (K_n). Здесь видно, что проницаемость пород относительно пористости по скв. 1 существенно выше, чем по скв. 2, то есть потенциал проницаемости доминирует над потенциалом емкости, что также подтверждает преобладание рассеянной (в основном в виде дискретных частиц) глинистости в породах скв. 1.

 $Puc.\ 7.\ Conocmaвление$ газопроницаемости (K_{np}) и открытой пористости (K_n) для пород пласта Б B_1 скв. 1 и 2

Подобная неадекватность между электрическим сопротивлением, проницаемостью и пористостью обусловлена, прежде всего, неодинаковыми условиями осадконакопления в разных частях пласта BB_1 и последующими литогенетическими преобразованиями. Различие в обстановке осадконакопления, в свою очередь, определило региональную неоднородность петрофизических свойств в пределах рассматриваемого пласта. Следствием этого является высокая вариация соотношения P_n и K_n в сопоставлении с разными частями пласта.

Важным моментом, искажающим результаты истолкования данных P_n и K_n , зачастую является отсутствие системы отбора образцов по разрезу пласта для лабораторных исследований. Водонасыщенные образцы с рассеянной (в виде дискретных частиц) глинистостью в отличие от пласта FB_1 обладают меньшим значением удельного электрического сопротивления (УЭС). Обратившись к рисункам 8 и 9, убеждаемся, что пласт FB_6 представлен одним геологическим телом (ГТ) — фацией головных частей разрывных течений.

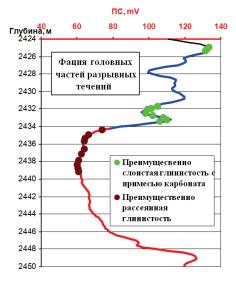


Рис. 8. **Данные ПС для пород** пласта **БВ**₆ скв. 1

Рис. 9. **Данные ПС для пород пласта БВ**₆ скв. 2

Однако ни по скв. 1, ни по скв. 2 отобранные образцы для исследований не являются репрезентативными. В первой скважине образцы взяты в основном из зоны максимальной аномалии ПС, во второй — из средней и минимальной. Участки в минимальной зоне аномалии ПС в обеих скважинах характеризуются различной формой, что говорит о различии свойств пород, слагающих пласт. Хотя разные части пласта отнесли к одной фации, тем не менее при более детальном рассмотрении можно видеть, что в завершающей фазе условия осадконакопления данной фации часто менялись. В верхней части отложения пласта присутствуют карбонаты, которые оказывают существенное влияние на электропроводность пород. В данном случае мы полагаем, что различие связи между P_n и K_n обусловлено двумя причинами: отсутствием представительного набора образцов (керна) и пренебрежением особенностей (закономерностей) условий формирования пласта.

Таким образом, на основании многочисленного анализа данных K_n , P_n и ГИС мы приходим к выводу, что нецелесообразно совместно обрабатывать петрофизические данные и данные ГИС, которые получены в ГС, представляющие различные фации — геологические тела. Следует, очевидно, фокусировать внимание на том, где, на какой основе и каким образом выделять геологические тела, то есть выполнить классифицирование ГТ. Петрофизическое моделирование целесообразно выполнять уже в пределах выделенных районов.

При решении теоретических и практических задач рекомендуется использовать атрибуты региональной петрофизики, а также развивать теоретическую базу петрофизики, формировать системный подход.

Список литературы

- 1. Бондарик Г. К. Общая теория инженерной (физической) геологии. М.: Недра, 1981. 256 с.
- 2. Муромцев В. С. Электрометрическая геология песчаных тел литологических ловушек нефти и газа. Л.: Недра, 1984. 260 с.
 - 3. Фертл В. Х. Определение глинистости песчаников // Нефть. газ и нефтехимия за рубежом. 1983. № 10. С. 22–28.

Сведения об автопах

Аипов Нурсултан Аипович, аспирант, Тюменский индустриальный университет, г. Тюмень, тел. 7(909)7361993, e-mail: aipov@inbox.ru

Алиев Мурад Мехти-оглы, аспирант, Тюменский индустриальный университет, г. Тюмень, тел. 7(912)9991719, e-mail: murad.aliev.mo@gmail.com

Information about the authors

Aipov N. A., Postgraduate, Industrial University of Tyumen, phone: 7(909)7361993, e-mail: aipov@inbox.ru

Aliev M. M., Postgraduate, Industrial University of Tyumen, phone: 7(912)9991719, e-mail: murad.aliev. mo@gmail.com

Бембель Сергей Робертович, д. г.-м. н., профессор, Тюменский индустриальный университет, начальник научно-исследовательского отдела ОАО «СургутНИ-ПИнефть», г. Тюмень, тел. 7(908)8747358, e-mail: bembel sr@surgutneftegas.ru

Казанцев Глеб Владимирович, аспирант, Тюменский индустриальный университет, г. Тюмень, тел. 7(3452)283963, e-mail: kazancevg@inbox.ru Bembel S. R., Doctor of Geology and Mineralogy, Professor, Industrial University of Tyumen, Head of research department «SurgutNIPIneft», phone: 7(908)8747358, e-mail: bembel_sr@surgutneftegas.ru

Kazantsev G. V., Postgraduate of Industrial University of Tyumen, Tyumen, phone: 7(3452)283963, e-mail: kazancevg@inbox.ru

УДК 550.8.05

ПОСТРОЕНИЕ ТРЕХМЕРНОЙ МОДЕЛИ ПЛАСТА ПК₁ ЯМБУРГСКОГО МЕСТОРОЖДЕНИЯ С УЧЕТОМ СЕДИМЕНТАЦИОННОЙ ЦИКЛИЧНОСТИ

3D GEOLOGICAL MODELING WITH ACOUNT OF SEDIMENTOLOGICAL CYCLOTHEMS BY THE EXAMPLE OF THE RESERVOIR PK_1 IN YAMBURGSKOYE FIELD

А. М. Барсукова, Г. В. Казанцев А. М. Barsukova, G. V. Kazantsev

OAO «ТюменНИИгипрогаз», г. Тюмень Тюменский индустриальный университет, г. Тюмень

Ключевые слова: условия осадконакопления; трехмерная модель; эффективная газонасыщенная толщина; сеноманская газовая залежь Key words: depositional environment; 3Д model; effective gas-saturated thickness; cenomanian gas reservoir

Сеноманский продуктивный комплекс формировался в течение длительной геологической истории, связанной с накоплением и последующим изменением осадков, формированием и ростом ловушек, приведших к созданию вместилищ для уникальных газовых залежей. Хорошим примером является газовая залежь пласта ПК₁. Качественное построение трехмерной модели имеет важнейшую роль, так как на ее основе решаются многие задачи: оценка запасов углеводородов, зон перспективного бурения, проектирование и мониторинг процесса разработки залежи.

Для оценки адекватности 3D-модели используются количественные и качественные критерии. Качественные критерии базируются на использовании априорной информации — определение условий осадконакопления. Количественные критерии определяются вычислением параметров качества, которые отражают сходство полученной модели с фактическими данными — геофизические исследования скважин, результаты лабораторных исследований керна, данные сейсморазвелки

Для корректного построения 3D-модели необходимо выполнение детальной корреляции и последующее создание структурного каркаса с учетом седиментационной цикличности отложений. В противном случае нарушаются схема нарезки слоев и распространение свойств в межскважинном пространстве [1].

Пренебрежение детальными исследованиями седиментации отложений при больших толщинах продуктивных пластов приводит к некорректному распространению внутренних флюидонепроницаемых перемычек и проницаемых пропластков-коллекторов в межскважинном пространстве, из-за чего флюидные потоки в фильтрационной модели формируются неправильно.

Ямбургское нефтегазоконденсатное месторождение административно расположено на территориях Тазовского и Надымского районов ЯНАО Тюменской области. В стратиграфическом отношении геологический разрез Ямбургского место-