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Аннотация. В статье представлен систематизированный анализ современных методов ма-

шинного обучения и их практического применения для решения ключевых задач нефтега-

зовой геологии и геофизики. Рассмотрены преимущества и ограничения основных архитек-

тур нейронных сетей, включая сверточные (CNN), рекуррентные (RNN) и глубокие сети 

прямого распространения (DNN). Особое внимание уделено интеграции данных различных 

типов и масштабов — от сейсмических исследований до керна и геофизических исследова-

ний скважин. В качестве практического инструментария рассмотрена платформа машинно-

го обучения Orange с открытым исходным кодом, продемонстрировавшая высокую эффек-

тивность для задач анализа и визуализации геологических данных. На реальных примерах 

показано, как применение машинного обучения позволяет существенно повысить точность 

интерпретации, сократить временные затраты и минимизировать субъективный фактор. 

Делается вывод о переходе нейросетевых технологий из разряда экспериментальных в кате-

горию обязательных инструментов для повышения экономической эффективности геолого-

разведочных работ. 
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Abstract. This paper presents a systematic analysis of modern machine learning methods and their 

practical applications in solving key problems in petroleum geology and geophysics. This study 

discusses the advantages and limitations of major neural network architectures, including convolu-

tional neural networks (CNNs), recurrent neural networks (RNNs), and deep feedforward networks 

(RNNs), and deep feedforward networks (DNNs). The authors of this paper paid special attention 
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to the integration of various types and scales of data, ranging from seismic surveys to core samples 

and borehole geophysical measurements. The open-source machine learning platform, Orange, is 

highlighted as a very effective tool for geological data analysis and visualization tasks. Real-world 

examples illustrate how machine learning can significantly enhance interpretation accuracy, reduce 

time costs, and minimize subjective bias.The paper concludes that neural network technologies are 

transitioning from experimental tools to binding instruments for improving the economic efficien-

cy of geological exploration activities.
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Введение 

Современный этап развития нефтегазовой отрасли характеризуется 

усложнением поисковых объектов, увеличением доли трудноизвлекаемых 

запасов и необходимостью повышения эффективности геолого-

разведочных работ в условиях экономической неопределенности. Эти вы-

зовы стимулируют активный поиск и внедрение цифровых технологий, 

среди которых методы искусственного интеллекта и машинного обучения 

занимают одно из центральных мест. 

Способность машинного обучения выявлять сложные, нелинейные 

закономерности в многомерных и зашумленных данных делает его идеаль-

ным инструментом для решения широкого спектра геологических и геофи-

зических задач — от автоматизированной обработки сейсмических данных 

и классификации фаций до прогнозирования коллекторских свойств и 

оценки рисков бурения. 

Цель работы — провести обзор современных возможностей приме-

нения методов машинного обучения в нефтегазовой геологии и геофизике, 

систематизировать основные типы решаемых задач и на практических 

примерах продемонстрировать эффективность их применения. 

1. Теоретические основы и архитектуры нейронных сетей 

В современной практике геолого-геофизических исследований наиболь-

шее применение нашли три основных типа архитектур нейронных сетей, каж-

дый из которых имеет специфические области эффективного применения. 

Сверточные нейронные сети (Convolutional Neural Networks, CNN) 

наиболее часто используются в обработке и интерпретации сейсмических 

данных, которые по своей природе являются двумерными или трехмерны-

ми изображениями [8]. CNN эффективны для автоматического выделения 

геологических объектов (сбросов, разломов, каналов, карбонатных постро-

ек), сейсмического фациального анализа, а также для подавления шумов и 

повышения разрешения сейсмических данных. 
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Рекуррентные нейронные сети (Recurrent Neural Networks, RNN),  

в особенности архитектуры с долгой краткосрочной памятью (LSTM), иде-

ально подходят для работы с последовательными данными, такими как 

кривые каротажа и данные керна [9]. Благодаря наличию «памяти» они 

успешно применяются для корреляции геологических разрезов, прогнози-

рования пропущенных данных и анализа временных рядов. 

Глубокие сети прямого распространения (Deep Neural Networks, 

DNN) широко используются для решения задач регрессии и классифика-

ции по табличным данным [6]. Наиболее востребованные приложения 

включают прогнозирование фильтрационно-емкостных свойств (пори-

стость, проницаемость, нефтенасыщенность) и классификацию литофаций 

по комплексу геофизических данных. 

2. Обзор практического применения в отечественной практике 

Эффективность методов машинного обучения подтверждается мно-

гочисленными исследованиями российских и зарубежных специалистов.   

В области петрографии значительные результаты получены Е. А. Василё-

нок [1], которая продемонстрировала методику классификации минераль-

ных компонентов гранитоидов по макроизображениям с использованием 

машинного обучения. В своем исследовании автор применила алгоритм ан-

самбля решающих деревьев (Fast Random Forest) в связке с плагином Traina-

ble Weka Segmentation для программной среды ImageJ. На основе подготов-

ленной базы данных из областей интереса (ROI) для породообразующих ми-

нералов (кварца, калиевого полевого шпата, плагиоклаза и биотита) была 

достигнута высокая точность классификации с ошибкой от 3,5 до 6,3 %. 

Ключевое преимущество подхода заключается в использовании цветовых 

параметров минералов в качестве надежного критерия для идентификации, 

что особенно актуально для разделения калиевых полевых шпатов и пла-

гиоклазов. Метод также позволил осуществить последующий количе-

ственный анализ — определить процентное содержание и количество зерен 

каждого минерала, что открывает возможности для автоматизированного 

анализа структуры горных пород (рис. 1). 

Значительный вклад в применение методов машинного обучения  

в буровых операциях внесен В. А. Старцевым, Г. В. Буслаевым и А. В. Ко-

нопляниковым [4], которые провели комплексный анализ мирового опыта 

использования данных технологий при бурении нефтяных и газовых сква-

жин. Авторы систематизировали применение различных архитектур 

нейронных сетей — от многослойных персептронов до LSTM — для реше-

ния ключевых технологических задач. Особое внимание уделено прогно-

зированию критических осложнений, включая прихваты бурильной колон-

ны, поглощения бурового раствора и газонефтеводопроявления, где точ-

ность моделей достигает 85–92 %.  
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Рис. 1. Создание масок минералов гранита по классификационным изображениям: 
а — биотит; б — калиевый полевой шпат; в — плагиоклаз; г — кварц [1] 

 

Практическая ценность работы подчеркивается детальным описани-

ем применения алгоритмов XGBoost, Light GBM и CatBoost для обработки 

телеметрических данных в реальном времени. Авторы также предложили 

концепцию интегрированной интеллектуальной модели бурения, включа-

ющую четыре уровня цифровизации — от инструментального контроля до 

управленческой трансформации (рис. 2), что позволяет приблизиться  

к «техническому пределу» эффективности буровых операций [4]. 

 

 
 

Рис. 2. Принцип действия Bag – of-features [4] 
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Результаты в области применения машинного обучения для модели-

рования сложных карбонатных коллекторов получены Д. В. Потехиным и  

С. В. Галкиным [3]. В исследовании пермокарбоновой залежи Усинского 

месторождения авторы успешно реализовали комплексный подход 3D-

геологического моделирования с использованием нейронных сетей Левен-

берга-Марквардта. На первом этапе была решена задача автоматизирован-

ного выделения коллекторов по данным ГИС с точностью 95 % при пол-

ном комплексе методов исследований. На втором этапе проведена класси-

фикация литотипов пород по системе Данхема с последующим расчетом 

параметров трещиноватости.  

Особый практический интерес представляет разработанная методика 

оценки трещинной проницаемости через плотность и раскрытость трещин, 

что позволило создать модель двойной пористости для трещинно-

кавернозных коллекторов. Полученные алгоритмы применены  

к 983 скважинам без отбора керна, что значительно повысило детальность 

геологической модели. Ошибка прогнозирования составила 3–5 %, под-

тверждая высокую надежность метода. Результаты работы внедрены  

в действующую цифровую 3D-геолого-технологическую модель место-

рождения (рис. 3). 

 

Рис. 3. Распределение литологических типов пород  
по данным машинного обучения [3] 

 

3. Практическая реализация в среде Orange Data Mining: кейс 

классификации литофаций 

Предлагаем рассмотреть применение платформы машинного обуче-

ния Orange для решения задачи классификации литофаций в условиях 

ограниченного количества эталонных данных (рис. 4). Платформа Orange 

представляет собой визуальную среду для анализа данных и машинного 
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обучения, что делает ее чрезвычайно удобной для геологов и геофизиков, 

не являющихся экспертами в программировании [9]. 

 

 
 

Рис. 4. Схема работы кластеризации методом ближайшего соседа 

 

Методика и материалы 

Исследование выполнено на территории одного из месторождений 

Западной Сибири. Целевой интервал представлен отложениями ветвящих-

ся и меандрирующих русел, характеризующихся высокой литологической 

неоднородностью. В распоряжении имелись данные по 160 скважинам, од-

нако полный комплекс исследований керна и ГИС был доступен лишь для 

11 скважин («эталонные»). 

Рабочий процесс был реализован следующим образом: 

 загрузка таблицы данных, содержащей кривые ГИС и резуль-

таты литологической интерпретации керна; 

 выбор целевой переменной (тип фации) и предикторов (кри-

вые ГИС); 

 предобработка данных (нормализация, обработка выбросов); 

 настройка и обучение модели нейронной сети; 

 оценка качества модели методом перекрестной проверки; 

 прогнозирование фаций для скважин без данных керна. 

В результате обученная модель показала точность на тестовых под-

выборках в 85–88 %. Полученные результаты стали основой для построе-

ния детальной фациальной модели и были успешно верифицированы 

(рис. 5).  

Этот пример демонстрирует, что использование визуальных средств 

машинного обучения предоставляет возможность эффективно решать 

практические задачи даже при малом объеме эталонных данных. 
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Рис. 5. Визуализация кластерезации «до» и «после» обучения  
на «эталонных» скважинах 

 

Выводы 

Проведенный анализ показал, что применение методов машинного 

обучения в нефтегазовой геологии и геофизике переживает этап активного 

внедрения в промышленные процессы. Нейросетевые технологии успешно 

решают задачи от первичной обработки данных сейсмических работ до 

комплексного прогнозирования свойств коллекторов, обеспечивая суще-

ственный экономический эффект за счет повышения точности и скорости 

интерпретации. 

Платформы с визуальным программированием, а также интегриро-

ванные в профильное программное обеспечение нейронные сети играют 

ключевую роль в демократизации доступа к этим технологиям, позволяя 

специалистам-геологам активно использовать машинное обучение в своих 

исследованиях. 
Перспективы развития направления связаны с созданием гибридных 

физико-статистических моделей, объединяющих детерминированные зна-

ния о процессах с возможностями машинного обучения, а также с актив-

ным использованием технологий глубокого обучения для решения наибо-

лее сложных задач интерпретации геолого-геофизических данных  
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