Это уравнение говорит, что на расстоянии r от источника звука расширяющейся сферы, с объемом V, давление равняется P. Слагаемое q часто определяется как сила акустического источника. Наконец, из уравнения звука

$$P_0 = \frac{\rho_0 c_0^2}{\gamma}.$$

Следовательно,

$$\frac{\Delta P}{P_0} = \frac{\gamma V''(t)}{c_0^2 4\pi r} = \frac{\gamma q''(t)}{\rho_0 c_0^2 4\pi r} \; .$$

Модель была адаптирована на расчет амплитуды волны сверхдавления при подводном взрыве БФП. Для оценки применимости модели используются открытые данные отчетов о проведении серии крупномасштабных экспериментов BURRO, СОУОТЕ и др. Однако однозначных выводов по имеющимся данным сделать нельзя. Несмотря на достаточно хорошую сходимость рассчитанных и фактических данных, необходимо провести серию экспериментов для изучения непосредственно подводного взрыва БФП.

Таким образом, для обеспечения безопасной транспортировки СПГ крайне необходимо всестороннее исследование явления подводного быстрого фазового перехода, с последующей проверкой физико-математической модели. Моделирование позволит произвести расчет мощности и радиуса продвижения взрывной волны, а также прогнозировать возможные разрушения.

Библиографический список

- Безопасность России. Правовые, социально-экономические и научно-технические аспекты. Тематический блок «Национальная безопасность». Обоснование прочности и безопасности объектов континентального шельфа. 6 т. – Т. 1. – М.: МГОФ «Знание», 2015. – 664 с. 2. Пермяков В. Н., Швец В. С. Быстрый фазовый переход как потенциальная угроза при транспортировке СПГ // Известия высших учебных заведений. Нефть и газ. – 2017. – № 2. – С. 111–115.
- Salzano E. Blast Waves Produced by Rapid Phase Transition of LNG on Water // 8th Topical Conference on Natural Gas Utilization, AIChE Spring Meeting, 2008. P. 303–313.
 - 4. Atallah S. Rapid Phase Transitions. Topical Report GRI-92/0533. Gas Research Institute, 1997.
- Shaw S., Baik J., Pitblado R. Consequences of Underwater Releases of LNG // Process Safety Progress. 2005. -Vol. 24, Issue 3. - P. 175-180.

Сведения об авторе

Швец Валерий Сергеевич, аспирант кафедры техносферной безопасности, Тюменский индустриальный университет, г. Тюмень, тел. 8(3452)390343, e-mail: ShvetsVS91@gmail.com

Information about the author

Shvets V. S., Postgraduate at the Department of Technosphere Safety, Industrial University of Tyumen, phone: 8(3452)390343, e-mail: ShvetsVS91@gmail.com

Машины, оборудование и обустройство промыслов

УДК 658.588:622.691.4.052.012

ДИАГНОСТИКА ТЕХНИЧЕСКОГО СОСТОЯНИЯ ГАЗОТУРБИННЫХ УСТАНОВОК ПО ПАРАМЕТРИЧЕСКИМ ДАННЫМ

DIAGNOSTICS OF TECHNICAL CONDITION OF GAS-TURBINE UNITS ON PARAMETRIC DATA

С. И. Перевощиков

S. I. Perevoschikov

Тюменский индустриальный университет, г. Тюмень

Ключевые слова: газоперекачивающие агрегаты; газотурбинные установки; параметрическая диагностика Key words: gas-pumping units; gas-turbine units; parametric diagnostics

Газотурбинные установки являются приводом большинства газоперекачивающих агрегатов магистральных газопроводов. Это придает им соответствующую значимость и повышенную требовательность к их техническому состоянию.

Надлежащее техническое состояние газотурбинных установок (ГТУ) обеспечивается различным образом в том числе своевременной и качественной диагностикой. В первую очередь речь идет о параметрических методах, основанных на показаниях штатных приборов контролируемых объектов, что для ГТУ, размещаемых вдали от центров с развитой инфраструктурой, является определяющим.

Успешность конкретных методов параметрической диагностики в значительной степени зависит от физических моделей, положенных в их основу. Существующие методы параметрической диагностики ГТУ базируются на термодинамических моделях. Это обеспечивает их определенной физической базой, так как ГТУ являются тепловыми двигателями, в которых используются термодинамические эффекты. Однако, несмотря на это, большинство из них недостаточно адекватно отражают реальные процессы, и это сказывается на их корректности [1]. Причина тому — сложность протекающих в ГТУ физических процессов и их недостаточная изученность. Ситуацию можно попытаться исправить за счет использования иного, не термодинамического, подхода к получению нужной модели.

Такая попытка предпринята при разработке методики, представленной в работах [2, 3]. Она получена на других принципах — на основе кинематики потока продуктов сгорания в проточной части силовых турбин ГТУ. Однако этим отличие методики [2, 3] не ограничивается. Ее результаты представляются не единичными значениями диагностических параметров (эффективной мощности N_e и эффективного КПД η_e установок), по которым выносятся диагностические выводы, а зависимостями вида $\bar{N}_{e \text{ пp}} = f(\bar{n}_{c \text{ пp}})$ и $\eta_e = (\bar{n}_{c \text{ пp}})$, где $\bar{N}_{e \text{ пp}}$ и $\bar{n}_{c \text{ пp}}$ — приведенная эффективная мощность ГТУ и приведенное число оборотов ротора силовой турбины установки.

$$\overline{N}_{enp} = \frac{N_e}{N_{eo}} \cdot \sqrt{\frac{T_{10}}{T_1}} \cdot \frac{P_{10}}{P_1};$$
(1)

$$\bar{n}_{np} = \frac{n_c}{n_{co}} \cdot \sqrt{\frac{T_{10}}{T_1}},\tag{2}$$

где n_{co} и n_c — число оборотов ротора силовой турбины ГТУ при номинальном и текущем режиме работы агрегата, 1/мин; T_{10} и T_{1} — температура атмосферного воздуха, номинальная для данного ГПА и текущая, К; P_{10} и P_{1} — давление атмосферного воздуха, номинальное для данного ГПА и текущее, H/m^2 ; N_{eo} и N_e мощность ГТУ, номинальная и текущая, Вт.

$$N_{e} = n_{c} \cdot q_{II}^{2} \cdot T_{4} \cdot \left[A \cdot \frac{n_{c}}{q_{II} \cdot T_{4}} + B \cdot \left(\frac{Z_{4} \cdot T_{4}}{Z_{3}^{"} \cdot T_{3}^{"}} \right)^{\frac{1}{n-1}} - a \right];$$

$$A = 6,830 \cdot 10^{-3} \cdot R^{2}; \quad B = 1,891 \cdot 10^{-4} \cdot \frac{1}{R};$$

$$(4)$$

$$A = 6,830 \cdot 10^{-3} \cdot R^2; \quad B = 1,891 \cdot 10^{-4} \cdot \frac{1}{R}; \tag{4}$$

$$a = 1,861 \cdot 10^{-5} \cdot \frac{1}{R},\tag{5}$$

где q_n — расход продуктов сгорания через силовую турбину установки, кг/с; T_4 и T_3'' — температура продуктов сгорания после силовой турбины и эффективная температура перед силовой турбиной, К; Z_4 и Z_3'' — коэффициенты сжимаемости продуктов сгорания в условиях после силовой турбины и перед ней.

Параметры A, B и a, входящие в (3), включают физические постоянные, характерные для ГТУ газовой промышленности, и индивидуально зависят от геометрической конфигурации проточной части силовых турбин. Для каждой ГТУ они имеют свои численные значения и постоянны. Их значения для некоторых ГТУ приведены в таблице.

Значения постоянных А, В и а для некоторых газотурбинных установок

Тип ГПА	$A \cdot 10^{3}, \mathrm{m}^{2}$	$B \cdot 10^4$, $\text{m}^2/(\text{kg} \cdot \text{K})$	$a\cdot 10^5$, м ² /(кг·К)
ГТ 750-6	0,50533	6,9529	6,8419
ГТН-6	2,9035	2,9006	2,8543
ГТК-10-4	0,75739	5,6793	5,5886
ГТК-16	6,1513	1,9928	1,9610
ГТН-25	7,0783	1,8578	1,8281
ГПА-Ц-16	4,2843	2,3879	2,3498
ГПА-10	4,1449	2,4277	2,3890
Коберра-182	5,7434	2,0624	2,0294

Для ГТУ, не представленных в таблице, A, B и a находятся по параметру R, который определяется подстановкой А, В и а из (4) и (5) в (3) и решением полученного уравнения относительно R.

Диагностика на основе функциональных зависимостей дает методике [2, 3] ряд преимуществ. Одним из них, и важнейшим, является получение не единичных значений диагностических параметров, а, по существу, реальных энергетических характеристик установок.

Соответствие получаемых зависимостей $\bar{N}_{e \text{ np}} = f(\bar{n}_{\text{c np}})$ и $\eta_e = (\bar{n}_{\text{c np}})$ действительным характеристикам требует подтверждения, что трудно выполнимо в условиях эксплуатации ГТУ. Однако такое подтверждение необходимо. Оно может быть получено на основе косвенных, но физически обоснованных, доказательств, а именно — получением аналогичных зависимостей иным способом, независимым от примененного в методике [2, 3] подхода. В частности, на термодинамических основах с использованием понятия эффективной температуры, в данном случае эффективной температуры продуктов сгорания перед силовой турбиной T_3'' . Эта температура не регистрируется датчиками, но реально существует, являясь результатом ряда энергетических преобразований рабочего тела газовых турбин.

Первая трансформация энергии рабочего тела происходит при совершении продуктами сгорания работы по приведению в действие силовых турбин ГТУ. В ходе этого процесса часть энергии продуктов сгорания теряется, рассеиваясь в виде теплоты в окружающее пространство. Вторично энергия рабочего тела изменяется за счет аккумулирования продуктами сгорания некоторого количества рассеиваемой теплоты. В результате этого энергетический потенциал рабочего тела повышается и вырабатываемая турбиной мощность возрастает.

В итоге, оказывается, что создаваемая ГТУ мощность N_e является функцией не температуры продуктов сгорания на входе в силовую турбину, а некоторой иной температуры, которая, в том числе, дает эффект приращения мощности, то есть эффективной температуры T_3'' .

Приращение мощности отмеченным образом и существование некоторой эффективной температуры являются установленными фактами [4], также фактом является невозможность инструментального определения температуры $T_3^{''}$. Доступно лишь с той или иной степенью достоверности определить ее расчетным способом. Такое определение T_3'' осуществлено в работе [5], где предлагается несколько вариантов расчета этого параметра.

$$T_{3}^{"} = T_{3} \cdot \left[1 - \left(1 - \frac{T_{30}^{"}}{T_{30}}\right) \cdot \left(\frac{T_{30}}{T_{40}}\right)^{\frac{n}{n-1}} \cdot \left(\frac{n_{e}}{n_{e0}}\right)^{2} \cdot \frac{P_{40}}{P_{4}} \cdot \left(\frac{T_{4}}{T_{3}}\right)^{\frac{n}{n-1}}\right],$$

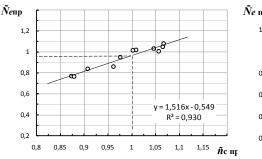
$$T_{30}^{"} = \frac{N_{e0}}{q_{n0} \cdot C_{nn0}} + T_{40};$$

гле

$$T_3^{''} = \frac{T_4}{\{1 - \overline{K_n} \cdot n_c^2 \cdot [1 - K_n \cdot n_c]^{n/(n-1)}\}},$$
 где
$$K_n = (1 - \frac{T_{40}}{T_{30}^{''}}) \cdot \frac{1}{\cdot n_{c0}}; \quad \overline{K_n} = K_n \cdot \left(\frac{T_{30}^{''}}{T_{40}}\right)^{n/(n-1)} \cdot \frac{1}{n_{c0}};$$

$$T_3^{''} = T_3 \cdot \left[\frac{T_{30}^{''}}{T_{30}} + K_3 \cdot (1 - \overline{n}_c)^{0,25}\right],$$
 где
$$K_3 = -6,980 \cdot 10^{-2} \cdot \left(\frac{T_{30}}{T_{40}}\right)^2 + 0,1397 \cdot \left(\frac{T_{30}}{T_{40}}\right) - 3,859 \cdot 10^{-2}.$$

В представленных выражениях используются следующие обозначения: T_3 — температура продуктов сгорания перед турбиной высокого давления (газотурбинным блоком), К; $\frac{n}{n-1}$ — комплексный показатель политропического расширения продуктов сгорания в турбоблоке; n_e — число оборотов ротора турбины высокого давления, 1/мин; индекс «о» — принадлежность параметра к номинальному режиму работы Γ TУ.


Из термодинамики известно, что мощность создается за счет разности энтальпий, и в рассматриваемом случае она равна

$$N_e = q_n \cdot C_{nn} \cdot (T_3'' - T_4) \,, \tag{6}$$

где C_{pn} — теплоемкость продуктов сгорания в условиях силовой турбины, Дж/(кг·К).

Неизбежные в любом термодинамическом процессе потери энергии в (6) учитываются в значении температуры T_3'' , что позволяет обходиться без традиционного применения коэффициента полезного действия (КПД) рассматриваемого процесса.

По (3) и (6) были произведены расчеты эффективной мощности N_e для одной и той же ГТУ типа ГТК-10-4, и результаты расчетов обработаны по методике [3]. Обработка состояла в получении зависимостей $\overline{N}_{e \text{ пр}} = f(\overline{n}_{\text{с пр}})$ и их достоверности R^2 с помощью программного продукта Microsoft Excel. Результаты расчетов приведены на рисунках 1 и 2.

Ne up

1,2

1

0,8

0,6

0,4

0,2

0,8

0,85

0,9

0,95

1

1,05

1,1

ñe up

Рис. 1. **Результаты расчетов** $\overline{N}_{e np}$ **на основе (3)**

 $Puc.\ 2.\$ **Результаты расчетов** $\overline{N}_{e\ np}$ **на основе (6)**

Выражение (6) в своей основе классическое, от классического вида его отличает только присутствие эффективной температуры. Замена поддающейся непосредственному измерению температуры рабочего тела турбины ее эффективным значением, учитывающим ранее отмеченные и существующие в действительности трансформации энергии рабочего тела, не искажает ситуацию, а, напротив, делает ее физически более достоверной.

Таким образом, имеются два выражения, (3) и (6), для определения одного и того же параметра одного и того же физического объекта. При этом данные выражения получены независимыми друг от друга способами: одно (3) — исходя из кинематики потока продуктов сгорания в проточной части ГТУ; другое (6) — на основе классических термодинамических зависимостей. Оба имеют под собой достаточную физическую базу. Результаты расчетов по этим выражениям (см. рис. 1 и рис. 2) можно считать независимыми. Необходимую независимость им придает и использование при расчетах по (3) и (6) значений различных параметров.

Сравнение независимо полученных результатов расчетов показывает следующее:

- оценочные значения диагностического параметра \overline{N}_{enp}^* (значения \overline{N}_{enp} при $\overline{n}_{cnp}=1$), полученные на основе (3) и (6) и по которым выносятся диагностические выводы, 0,967 и 0,958 соответственно отличаются на 0,009 или, с учетом относительности параметра \overline{N}_{enp} , на 0,9 %;
- достоверности диагностических выводов, полученных по сравниваемым вариантам диагностики, близки и составляют 0,930 и 0,922.

Минимальное пороговое снижение N_e , при котором регламентируется принимать управленческое решение по дальнейшей эксплуатации ГТУ (о выводе ГТУ в средний ремонт) составляет 15 %.

Таким образом, наблюдаемое расхождение между оценочными значениями \overline{N}_{enp}^* , рассчитанными по (3) и (6), намного меньше 15 %. То есть погрешность определения N_e по (3) и (6), если под таковой понимать разность между \overline{N}_{enp}^* , полученными независимыми друг от друга способами, существенно меньше (более чем в 16 раз) определяемой величины. Это позволяет сделать заключение, что результаты расчетов по (3) и (6) соответствуют действительности (в пределах установленной достоверности 0,930 и 0,922), а зависимости (3) и (6) адекватно отражают описываемые ими процессы.

Такой вывод дает основание считать выражения (3) и (6) приемлемыми для выполнения на их основе параметрической диагностики ГТУ.

Второй диагностический параметр ГТУ — эффективный КПД η_e — является производной от эффективной мощности N_e , так как представляет отношение данной мощности к энергии, затраченной на ее получение $(q_m \cdot \theta_p^n)$

$$\eta_e = \frac{N_e}{(q_m \cdot \theta_p^n)},\tag{7}$$

где N_e находится по (3) или (6); q_m и θ_p^n — расход (м³/с) и низшая теплотворная способность (Дж/м³) топливного газа.

Выше сделанное заключение относительно (3) и (6) придает и выражению (7) необходимые для его практического применения качества.

Библиографический список

- 1. Перевощиков С. И. Параметрическая диагностика газоперекачивающих агрегатов с турбоприводом. Тюмень: ТИУ, 2017. 236 с.
- Перевощиков С. И. Диагностика газотурбинных двигателей по их эффективной мощности // Известия высших учебных заведений. Нефть и газ. – 2014. – № 3 – С. 112–121.
- Перевощиков С. И. Развернутая диагностика технического состояния газотурбинных двигателей по их эффективной мощности // Известия высших учебных заведений. Нефть и газ. 2014. № 5. С. 92–98.
- Ревзин Б. С., Ларионов И. Д. Газотурбинные установки с нагнетателями для транспорта газ: справ. пособие. – М.: Недра, 1991. – 303 с.
- Перевощиков С. И. Расчет эффективной температуры продуктов сгорания перед силовыми турбинами газотурбинных двигателей // Известия высших учебных заведений. Нефть и газ. – 2016. – № 1. – С. 100–106.

Сведения об авторе

Перевощиков Сергей Иванович, д. т. н., консультант кафедры прикладной механики, Тюменский индустриальный университет, г. Тюмень, тел. 8(3452)467480

Information about the author

Perevoschikov S. I., Doctor of Engineering, Consultant at the Department of Applied Mechanics, Industrial University of Tyumen, phone: 8(3452)467480