УДК 621.9.022:621.791.927

ИССЛЕДОВАНИЕ СТРУКТУРЫ И СВОЙСТВ ВЫСОКОХРОМИСТОГО КОМПЛЕКСНО ЛЕГИРОВАННОГО НАПЛАВОЧНОГО СПЛАВА ЧУГУНА, РАБОТАЮЩЕГО В УСЛОВИЯХ ЗНАЧИТЕЛЬНЫХ НАГРУЗОК И ПОВЫШЕННЫХ ТЕМПЕРАТУР

STUDY OF THE STRUCTURE AND PROPERTIES OF HIGH-CHROMIUM COMPLEX LEGATED SURFACING CAST IRON ALLOY OPERATING UNDER SIGNIFICANT LOADS AND HIGH TEMPERATURES

А. А. Галинский, В. С. Прошин, В. Н. Кусков А. А. Galinsky, V. S. Proshin, V. N. Kuskov

Тюменский индустриальный университет, г. Тюмень

Ключевые слова: наплавка; чугун; высокохромистый сплав; наплавочная порошковая лента Key words: surfacing; cast iron; high-chromium alloy; surfacing powder tape

В данной работе изложены результаты исследований структуры, влияния наиболее распространенных электродов и порошковых лент для сварки и наплавки высоколегированных сталей и типов источников питания на состав наплавленного металла.

Цель исследований — разработка методики определения оптимальных режимов наплавки, типа и марок наплавочных порошковых лент для изготовления и ремонта лотка засыпного аппарата доменной печи, а также аналогичных конструкций.

Достижению поставленной цели способствовало сочетание теоретических, экспериментальных и вычислительных методов исследования. Работу выполняли в лабораторных условиях на базе предприятия ЗАО ИПФ «Вектор».

Наряду с традиционными использовали инверторный источник питания. Применили следующие современные методики и оборудование: рентгенофлуоресцентный анализ (РФА) со спектрометром X-MET 5 000 и растровую электронную микроскопию Fischerscope XRAY XDV-SDD, JSM 6490 [1].

Использовали металлографический метод, измерения механических и электрических характеристик.

Наплавку выполняли в два прохода пластинами сталей 12X18H10T (рис. 1 а) и 20X13 (рис. 1 б) размерами 70 х 50 х 8 мм. Хромо-никель-титановая сталь имеет аустенитную структуру, жаропрочная сталь 20X13 — мартенситную или бейнитную в зависимости от скорости охлаждения. Их заготовки сваривали встык.

Плотность сплавов при 20 0 C составляет 7,92·103 кг/м 3 у стали 12X18H10T и 7,76·10 3 кг/м 3 у стали 20X13.

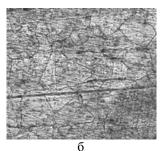


Рис. 1. Структура металла исследуемого образца (увеличение в 400 раз): а) 12X18H10T; б) 20X13

Для определения химического состава наплавленного металла, электродного стержня и покрытия использовали РФА зачищенного шва на спектрометре X-МЕТ 5 000 с пакетом программ X МЕТ. Источником возбуждения служила рентгеновская трубка с родиевым анодом PW 1404/00 (напряжение — 60 кВ, сила тока — 50 мА). Время на определение одного элемента на глубине 0,1–0,5 мм от поверхности составляло около 1 мин.

Для исследования были выбраны электроды ЦЛ-9, УОНИ-13\НЖ и порошковая лента ПЛ-НП 450Х20Б7МВ2Ф Б-У [2] при соединении пластин из стали 20Х13, а также электроды ОЗЛ-8, ОК-61.30 и Feji ER-308 — при соединении пластин из стали 12Х18Н10Т. Эти электроды наиболее широко применяются в различных отраслях промышленности. Сварка всех соединений выполнялась на постоянном токе обратной полярности с различными режимами: сила тока 60 A, 80 A, 100 A и 120 A [3].

Для определения влияния типа источников питания и электродов была разработана специальная методика.

Использовали следующий порядок подготовки деталей:

- 1. Выбор и разметка стандартного листа с учетом ширины реза 3 мм, марки стали, толщины, ориентации и размеров заготовок для сварки 70 х 60 (металлическая линейка ГОСТ 427-70).
- 2. Плазменная резка заготовок 70 x 60 с применением агрегата «Сварог» СUT-40B.
- 3. После предварительной разметки (металлическая линейка ГОСТ 427-70) опиливание зон термического влияния 5 мм с помощью ленточнопильного станка по металлу. В процессе опиливания необходимо проводить охлаждения несколько раз, не допуская перегрева пластин выше $623 \text{ K} (350 \, ^{0}\text{C})$.
- 4. Предварительный подогрев до температуры 623 К (350 0 C) готовых образцов стали марки 20X13 перед наплавкой посредством помещения в термическую печь CAO 14.3.6/5C2. Максимальная температура печи 500 0 C. Установленная мощность 55 кВт [4].
- 5. Наплавку соединений необходимо выполнить по требованиям ГОСТ Р ИСО 857-1-2009. В процессе сварки фиксировать силу сварочного тока с помощью амперметра DC 0-200 В 200А, техника выполнения первого слоя с обратно поступательными движениями для получения наилучшего провара корня шва.
 - 6. Образцы наплавленного металла остудить до комнатной температуры.
- Удаление шлаковой корки с поверхности облицовочного шва выполнить шлакоотделителем.
- 8. Заготовки для шлифования вырезать в поперечном сечении сварных швов в 30 мм от края образцов.
- 9. В различных точках площади шлифа определить химический состав наплавленного металла, делая не менее 5 замеров равномерно по высоте шва. Зафиксировать содержание легирующих элементов, используя спектрометр X-МЕТ 5000 и прилагаемую к нему инструкцию.
- 10. Выполнить фотографирование характерных участков наплавленного и исходного металла, а также мест их соприкосновения.
- 11. Рассчитать эффективную тепловую мощность источника Qэ нагрева по формуле [1] Qэ = η UI, где η КПД сварной дуги; U напряжение на дуге, B; I сварочный ток, A.
- 12. Построить графики зависимости содержания легирующих элементов в наплавленном металле от Qэ, рассчитать коэффициенты регрессии и выполнить анализ результатов. Принять во внимание погрешность измерений.

Выводы

Поскольку в наплавленный металл одновременно переходят несколько элементов, взаимодействуя с кислородом, мы приняли во внимание все возможные индивидуальные реакции основных реагентов с кислородом, а также учли их взаимовлияние.

Учитывая, что оксиды «чужих» элементов не растворяются в железе, а кислород в железе растворяется незначительно, они образуют собственную фазу в виде включений. Примем активность оксидов (вводимых в наплавленный метал элементов и FeO) равную 1.

Стоит отметить видимое уменьшение зоны термического влияния по мере приближения к верхней поверхности пластины в результате увеличения ширины разделки кромок.

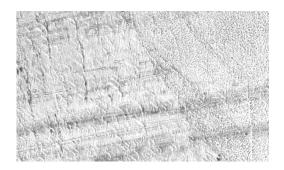


Рис. 2. Фото сварного соединения стали 12Х18Н10Т

В нижней части верхнего слоя в центре фотографии (рис. 2) виден след всплывавшего пузырька. В области соединения трех слоев (рис. 3) возникает опасность зарождения усталостной трещины.

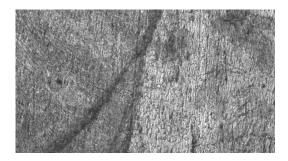


Рис. 3. Наложение слоев в сварном соединении стали 12Х18Н10Т

На процесс перехода легирующих элементов в наплавленный металл влияют окисление элементов, разбрызгивание и испарение [5].

Исследования изнашивания наплавленных слоев в исходном состоянии показали, что весовой износ по глубине изменяется весьма сложным образом в различных ее структурных зонах [2].

В ходе проведенного исследования было установлено следующее:

- 1. Наибольшим сопротивлением абразивному износу обладает мелкозернистая средняя зона [2].
- 2. Установлен характер структурных превращений при нагреве металла наплавки [2].
 - 3. На интенсивность абразивного износа металла наплавки существенное

влияние оказывает вид микроструктуры материала. Наибольшая износостойкость наблюдается у наплавки с мелкоигольчатой структурой, включающей первичные карбиды [2].

- 4. Получены значения параметра интегральной износостойкости металла наплавки K_{unm} [5].
 - Для исходного состояния $K_{uhm} = (1,05 \pm 0,04) \text{ г/см}^2 \cdot \text{час.}$
 - После отжига $K_{\text{инт}} = 1,45$ до 2,89 г/см² · час.
- Закалка от 900 0 С не только благоприятно сказывается на структуре материала и его твердости, но и способствует существенному увеличению параметра интегральной износостойкости до уровня $K_{\text{инт}} = 0.58 \text{ г/см}^2 \cdot \text{час}$.

Библиографический список

- 1. Кусков В. Н., Мамадалиев Р. А., Обухов А. Г. Переход легирующих элементов в наплавленный металл при сварке стали 12X18H10T // Фундаментальные исследования. 2013. № 11–9. С. 1794–1797.
- 2. Структура и свойства высоколегированного наплавочного сплава, работающего в условиях термоциклирования / Д. М. Левин [и др.] // Известия Тульского государственного университета. Серия: Физика. 2004. С. 1–15.
- Ремонт изношенных изделий с применением порошковых лент / В. Н. Кусков [и др.] // Научный альманах. 2014. – № 1 (1). – С. 211–214.
- 4. Мамадалиев Р. А., Кусков В. Н., Галинский А. А. Влияние источника нагрева на легирование наплавленного металла при получении соединений высоколегированных сталей // Фундаментальные исследования. 2014. № 11–3. С. 515–518.
- 5. Прогнозирование химического состава металла, наплавленного электродами с рутиловым и ильменитовым покрытиями / И. К. Походня [и др.] // Автоматическая сварка. 1976. № 7. С. 1–4.

Сведения об авторах

Галинский Андрей Александрович, ассистент кафедры технологии машиностроения, Тюменский индустриальный университет, г. Тюмень, тел. 89199486170, e-mail: Don-Andre-1990@yandex.ru

Прошин Владимир Спартакович, студент кафедры технологии машиностроения, Томенский индустриальный университет, г. Тюмень, тел. 89324782388, e-mail: v.s.proshin@gmail.com

Кусков Виктор Николаевич, д. т. н., профессор кафедры технологии машиностроения, Тюменский индустриальный университет, г. Тюмень, тел. 89129239950, e-mail:vnkuskov@yandex.ru

Information about the authors

Galinsky A. A., Assistant at the Department of Technology of Mechanical Engineering, Industrial University of Tyumen, phone: 89199486170, e-mail: Don-Andre-1990@yandex.ru

Proshin V. S., Student at the Department of Technology of Mechanical Engineering, Industrial University of Tyumen, phone: 89324782388, e-mail: v.s.proshin@gmail.com

Kuskov V. N., Doctor of Engineering, Professor at the Department of Technology of Mechanical Engineering, Industrial University of Tyumen, phone: 89129239950, e-mail: vnkuskov@yandex.ru

УДК 621.438:622.691.4.052.006

АДАПТИВНАЯ ПРИВЕДЕННАЯ ХАРАКТЕРИСТИКА ЦЕНТРОБЕЖНЫХ НАГНЕТАТЕЛЕЙ ПРИРОДНОГО ГАЗА ADAPTIVE REDUCED CHARACTERISTIC OF CENTRIFUGAL BLOWERS OF NATURAL GAS

С. И. Перевощиков

S. I. Perevoschikov

Тюменский индустриальный университет, г. Тюмень

Ключевые слова: центробежные нагнетатели; приведенные характеристики; параметрическая диагностика

Key words: centrifugal blowers; reduced characteristic; parametric diagnostics

Центробежные нагнетатели являются основным средством доставки природного газа его многочисленным потребителям, и от эффективности их эксплуатации существенно зависят надежность и результативность работы как отдельных газовых магистралей, так и газотранспортных систем в целом.

Эффективность работы данных машин достигается различными средствами, но главным образом эксплуатацией в соответствии с их техническими характеристиками. Для этого используются приведенные характеристики нагнетателей, пред-

№ 3, 2018