влияние оказывает вид микроструктуры материала. Наибольшая износостойкость наблюдается у наплавки с мелкоигольчатой структурой, включающей первичные карбиды [2].

- 4. Получены значения параметра интегральной износостойкости металла наплавки K_{unm} [5].
 - Для исходного состояния $K_{uhm} = (1,05 \pm 0,04) \text{ г/см}^2 \cdot \text{час.}$
 - После отжига $K_{\text{инт}} = 1,45$ до $2,89 \text{ г/см}^2 \cdot \text{час}$.
- Закалка от 900 0 С не только благоприятно сказывается на структуре материала и его твердости, но и способствует существенному увеличению параметра интегральной износостойкости до уровня $K_{\text{инт}} = 0.58 \text{ г/см}^2 \cdot \text{час}$.

Библиографический список

- 1. Кусков В. Н., Мамадалиев Р. А., Обухов А. Г. Переход легирующих элементов в наплавленный металл при сварке стали 12X18H10T // Фундаментальные исследования. 2013. № 11–9. С. 1794–1797.
- 2. Структура и свойства высоколегированного наплавочного сплава, работающего в условиях термоциклирования / Д. М. Левин [и др.] // Известия Тульского государственного университета. Серия: Физика. 2004. С. 1–15.
- 3. Ремонт изношенных изделий с применением порошковых лент / В. Н. Кусков [и др.] // Научный альманах. 2014. № 1 (1). С. 211–214.
- 4. Мамадалиев Р. А., Кусков В. Н., Галинский А. А. Влияние источника нагрева на легирование наплавленного металла при получении соединений высоколегированных сталей // Фундаментальные исследования. 2014. № 11–3. С. 515–518.
- 5. Прогнозирование химического состава металла, наплавленного электродами с рутиловым и ильменитовым покрытиями / И. К. Походня [и др.] // Автоматическая сварка. 1976. № 7. С. 1–4.

Сведения об авторах

Галинский Андрей Александрович, ассистент кафедры технологии машиностроения, Тюменский индустриальный университет, г. Тюмень, тел. 89199486170, e-mail: Don-Andre-1990@yandex.ru

Прошин Владимир Спартакович, студент кафедры технологии машиностроения, Тюменский индустриальный университет, г. Тюмень, тел. 89324782388, e-mail: v.s.proshin@gmail.com

Кусков Виктор Николаевич, д. т. н., профессор кафедры технологии машиностроения, Тюменский индустриальный университет, г. Тюмень, тел.89129239950, e-mail:vnkuskov@yandex.ru

Information about the authors

Galinsky A. A., Assistant at the Department of Technology of Mechanical Engineering, Industrial University of Tyumen, phone: 89199486170, e-mail: Don-Andre-1990@yandex.ru

Proshin V. S., Student at the Department of Technology of Mechanical Engineering, Industrial University of Tyumen, phone: 89324782388, e-mail: v.s.proshin@gmail.com

Kuskov V. N., Doctor of Engineering, Professor at the Department of Technology of Mechanical Engineering, Industrial University of Tyumen, phone: 89129239950, e-mail: vnkuskov@yandex.ru

УДК 621.438:622.691.4.052.006

АДАПТИВНАЯ ПРИВЕДЕННАЯ ХАРАКТЕРИСТИКА ЦЕНТРОБЕЖНЫХ НАГНЕТАТЕЛЕЙ ПРИРОДНОГО ГАЗА ADAPTIVE REDUCED CHARACTERISTIC OF CENTRIFUGAL BLOWERS OF NATURAL GAS

С. И. Перевощиков

S. I. Perevoschikov

Тюменский индустриальный университет, г. Тюмень

Ключевые слова: центробежные нагнетатели; приведенные характеристики; параметрическая диагностика

Key words: centrifugal blowers; reduced characteristic; parametric diagnostics

Центробежные нагнетатели являются основным средством доставки природного газа его многочисленным потребителям, и от эффективности их эксплуатации существенно зависят надежность и результативность работы как отдельных газовых магистралей, так и газотранспортных систем в целом.

Эффективность работы данных машин достигается различными средствами, но главным образом эксплуатацией в соответствии с их техническими характеристиками. Для этого используются приведенные характеристики нагнетателей, пред-

ставляющие зависимость основных эксплуатационных показателей машин, какими являются их степень сжатия ε_n , относительная приведенная внутренняя мощность $[N_i/\rho_{\rm ro}]_{\rm np}$ и политропический КПД $\eta_{\rm non}$, от параметров, определяющих режимы работы нагнетателей, — приведенной производительности $[Q]_{\rm np}$ и приведенного числа оборотов роторов нагнетателей $[n_n/n_{no}]_{np}$.

Используемые в настоящее время приведенные характеристики в полной мере отвечают только потребностям проектной практики, применение их в эксплуатационной сфере связано с рядом сложностей. Сложности вызывает в первую очередь их «статичность», то есть соответствие только определенному техническому состоянию машин, а именно исходному, новому состоянию, при котором их получают. Ориентация на такие характеристики при эксплуатации нагнетателей, в ходе которой машины подвергаются износу, и их характеристики изменяются, что делает управление транспортом газа достаточно проблематичным. Другой, также существенный недостаток приведенных характеристик — их графический вид. Он не допускает использование характеристик в автоматических системах управления технологическими процессами (АСУ ТП) газотранспортных систем, несмотря на значимость содержащейся в них информации для управленческого процесса. Для АСУ ТП, базирующихся на цифровых технологиях, требуется аналитическая версия характеристик.

Таким образом, для более полного использования приведенных характеристик, особенно в эксплуатационной сфере, необходимо решить две задачи. Первая заключается в переводе характеристик из их исходного графического вида в вид аналитический, вторая — в придании аналитической форме адаптивных свойств, то есть способности изменяться в зависимости от износа машин. Данные задачи в некоторой степени решены в работах [1, 2], где рассматриваемым характеристикам придается адаптивный вид. При этом в первой работе перевод основной зависимости $\varepsilon_n = f([Q]_{\rm пр}; [n_n/n_{no}]_{np})$ из графического вида в аналитический производится с погрешностью в 1,48 % для неполнонапорных нагнетателей и 2,00 % — для полнонапорных машин. В работе [2] перевод $\varepsilon_n = f([Q]_{\rm пр}; [n_n/n_{no}]_{np})$ уточняется с достижением погрешности 0,9 и 1,5 % для указанных типов нагнетателей при одном способе уточнения и до десятых долей процента для обеих разновидностей машин — при другом, также рассмотренном в работе [2].

Согласно исследованиям [4], степень сжатия неполнонапорных нагнетателей в ходе эксплуатации машин может изменяться на 0,79 %, а полнонапорных — на 1,55 % (при снижении политропического КПД машин в результате их износа на 3 %). Полученные в работах [1, 2] аналитические выражения для характеристик $\varepsilon_n = f([Q]_{\rm пр}; [n_n/n_{no}]_{np})$ имеют погрешность, соизмеримую с отмеченными цифрами. Это обстоятельство делает выражения [1, 2] малопригодными для АСУ ТП газотранспортных систем в связи с приблизительным отражением ими текущих значений степени сжатия нагнетателей. Необходимо получение более точной аналитической зависимости $\varepsilon_n = f([Q]_{\rm пр}; [n_n/n_{no}]_{np})$. Для этого следует обратиться к теории компрессорных машин. В частности, к выражению (1) для определения внутренней мощности нагнетателя N_i и к методике для расчета этого же параметра с использованием приведенной внутренней мощности $[N_i/\rho_{co}]_{np}$.

$$N_{i} = \frac{M \cdot L}{\eta_{non}},$$

$$L = \frac{k \cdot \eta_{non}}{(k-1)} \cdot Z_{h1} \cdot R_{h1} \cdot T_{h1} \cdot (\varepsilon_{h}^{\frac{(k-1)}{k \cdot \eta_{non}}} - 1),$$

$$(1)$$

,

¹ ОНТП 51-1-85. Общесоюзные нормы технологического проектирования. Магистральные трубопроводы: Часть 1. Газопроводы. — Введ. 1986-01-01. — М., 1986. — 222 с.

где M — массовый расход газа через нагнетатель; L — удельные затраты энергии на сжатие 1 кг газа; T_{H1} — абсолютная температура газа на входе нагнетателя, z_{H1} — коэффициент сжимаемости газа при условиях на входе в нагнетатель; R_{H1} — газовая постоянная компримируемого газа; k — показатель адиабаты ком-

По методике² внутренняя мощность нагнетателя N_i находится с использованием приведенной внутренней мощности $[N_i/\rho_{ro}]_{np}$.

$$N_i = \left[\frac{N_i}{\rho_{zo}}\right]_{np} \cdot \rho_{H1} \cdot \left[\frac{n_H}{n_{Ho}}\right]_{np}^3,\tag{2}$$

где ρ_{H1} — плотность компримируемого газа при условиях на входе нагнетателя; приведенное число оборотов n_{H} и n_{HO} — текущее и номинальное число оборотов ротора нагнетателя.

Подставим в (2) вместо $[N_i/\rho_{co}]_{np}$ значение данного параметра зависимости (3) [1, 2], аппроксимирующей кривую $[N_i/\rho_{co}]_{np} = f(Q_{np})$ приведенной характеристики нагнетателя, а плотность газа ρ_{H1} раскроем через уравнение состояния газа. В результате получим (4).

$$\begin{bmatrix} N_i \\ \rho_{co} \end{bmatrix}_{np} = [a_N \cdot Q_{np}^2 + b_N \cdot Q_{np} + c_N],$$
(3)

где Q_{np} — приведенная производительность нагнетателя; a_N , b_N и c_N — коэффициенты аппроксимации.

$$N_i = \left[a_N \cdot Q_{np}^2 + b_N \cdot Q_{np} + c_N \right] \cdot \frac{P_{n1}}{Z_{n1} \cdot R_n \cdot T_{n1}} \cdot \left[\frac{n_n}{n_{n0}} \right]_{np}^3. \tag{4}$$

По (1) мощность N_i равна

$$N_{i} = \frac{k}{(k-1)} \cdot P_{H1} \cdot Q_{v} \cdot (\varepsilon_{H}^{\frac{(k-1)}{k \cdot \eta_{non}}} - 1).$$
 (5)

При получении (5) массовый расход газа M, содержащийся в (1), представлялся произведением $(\rho_{H1}\cdot Q_v)$, где Q_v — объемная производительность нагнетателя при условиях на его входе, а плотность $ho_{{\scriptscriptstyle H}1}$ раскрывалась с использованием уравнения состояния газа.

Зависимости (4) и (5) дают определение одной и той же величины, поэтому их правые части равны

$$[a_N \cdot Q_{np}^2 + b_N \cdot Q_{np} + c_N] \cdot \frac{P_{n1}}{Z_{n1} \cdot R_n \cdot T_{n1}} \cdot \left[\frac{n_n}{n_{n0}} \right]_{np}^3 = \frac{k}{(k-1)} \cdot P_{n1} \cdot Q_v \cdot (\varepsilon_h^{\frac{(k-1)}{k \cdot \eta_{n07}}} - 1). \tag{6}$$

Решение (6) относительно ε_{H} дает искомый аналитический вид характеристики $\varepsilon_{\scriptscriptstyle H} = f([Q]_{\rm пp}; [n_{\scriptscriptstyle H}/n_{\scriptscriptstyle Ho}]_{\it np})$. При этом данная характеристика может быть представлена в нескольких вариантах.

$$\varepsilon_{H}^{\frac{(k-1)}{k \cdot \eta_{n0n}}} = 1 + \frac{(k-1)}{k} \cdot \frac{\left[a_{N} \cdot Q_{np}^{2} + b_{N} \cdot Q_{np} + c_{N}\right]}{Q_{v} \cdot \left(Z_{u_{1}} \cdot R_{u} \cdot T_{u_{1}}\right)} \cdot \left[\frac{n_{u}}{n_{uo}}\right]_{v_{v}}^{3}; \tag{7}$$

$$\varepsilon_{H}^{\frac{(k-1)}{k \cdot \eta_{NO3}}} = 1 + K_{HK} \cdot \frac{[a_{N} \cdot \bar{n}_{H} \cdot Q_{v}^{2} + b_{N} \cdot \bar{n}_{H}^{2} \cdot Q_{v} \cdot + c_{N} \cdot \bar{n}_{H}^{3}]}{Q_{v} \cdot (Z_{H1} \cdot R_{H} \cdot T_{H1})^{2.5}};$$
(8)

Там же.

$$\varepsilon_{H}^{\frac{(k-1)}{k \cdot \eta_{non}}} = 1 + \frac{(k-1)}{k} \cdot \frac{\left[a_{N} \cdot Q_{np}^{2} + b_{N} \cdot Q_{np} + c_{N}\right]}{Q_{np} \cdot \frac{(Z_{H1} \cdot R_{H} \cdot T_{H1})^{2.5}}{(Z_{np} \cdot R_{np} \cdot T_{np})^{1.5}}} \cdot \left(\frac{n_{H}}{n_{H0}}\right)^{2},$$

$$K_{HK} = \frac{(k-1)}{k} \cdot \left(Z_{np} \cdot R_{np} \cdot T_{np1}\right)^{1.5}; \, \bar{n}_{H} = \frac{n_{H}}{n_{H0}},$$
(9)

где Z_{np} , R_{np} и T_{np1} — приведенные значения коэффициента сжимаемости газа, газовой постоянной и температуры газа на входе нагнетателя (даются на приведенных характеристиках).

Все варианты характеристики $\varepsilon_H = f([Q]_{\text{пр}}; [n_H/n_{Ho}]_{np})$, то есть (7)–(9), обладают адаптивными свойствами — изменяются адекватно износу нагнетателей. Эти свойства придаются присутствующему в них политропическому КПД η_{noz} , который зависит от износа машин [3], и его текущие значения поддаются оценке по методике [4].

На основе совокупных сведений по η_{noa} , содержащихся в работах [3, 4], получается зависимость (10) для расчета η_{nox} по результатам параметрической диагностики нагнетателей [1, 2].

$$\eta_{no,n} = a_{\eta} \cdot Q_{np}^2 + b_{\eta} \cdot Q_{np} + c_{\eta} - (\eta_{no,no} - \eta_{no,n}^*), \tag{10}$$

 $\eta_{no\pi}=a_{\eta}\cdot Q_{np}^2+b_{\eta}\cdot Q_{np}+c_{\eta}-(\eta_{no\pi,o}-\eta_{no\pi}^*),$ (10) где a_{η} , b_{η} и c_{η} — коэффициенты аппроксимации зависимости $\eta_{no\pi}=f(Q_{np})$ приведенной характеристики нагнетателя; $\eta_{non.o}$ и $\eta_{non.o}^*$ — паспортное и оценочное значения политропического КПД нагнетателя.

Оценочное значение КПД η_{non}^* находится по результатам параметрической диагностики нагнетателя, методика которой изложена в работе [4].

Приведенные характеристики нагнетателей в их адаптивном аналитическом виде представляют зависимости (3), (7)-(9) и (10), из которых (3) и (10) можно получить с помощью программного продукта Microsoft Excel.

Как показывают расчеты, выполненные для нагнетателей 370-14-1/370-15-1, 520-12-1, PCL-1002 и 235-21-1, представляющих почти все разновидности используемых в газовой промышленности технологических компрессорных машин, выражения (3) и (10) полностью соответствуют их графическим прототипам. Более сложные зависимости (7)-(9) также обладают этим качеством. Оно достигается за счет регулируемости погрешности (7)-(9). Необходимая точность этих выражений достигается за счет аппроксимирования зависимостей $[N_i/
ho_{co}]_{np}=f(Q_{np})$ с требуемой достоверностью. Для этого достаточно оперировать возможно большим количеством данных по $[N_i/\rho_{co}]_{np}$ и Q_{np} .

Таким образом, практическая идентичность зависимостей (3), (7)-(9) и (10) по количественным показателям приведенным характеристикам нагнетателей позволяет использовать эти зависимости в АСУ ТП газотранспортных систем.

Для соблюдения в (7)-(9) единства размерности всех содержащихся в них величин характеристики $\left[\frac{N_i}{\rho_{zo}}\right]=f(Q_{np})$ и $\eta_{non}=f(Q_{np})$ должны аппроксимироваться с использованием $\left[\frac{N_i}{\rho_{zo}}\right]$ и Q_{np} в размерностях, отличных от тех, в которых они присутствуют на исходных приведенных характеристиках: отношение $\left[\frac{N_i}{a_{ij}}\right]$ — в размерности $\mathrm{Br/(\kappa r/m^3)}$, производительность Q_{np} — в $\mathrm{m^3/c}$. Остальные параметры в (7)–(9) имеют следующие размерности: объемная производительность нагнетателя при условиях на его входе Q_v — м 3 /c; газовая постоянная компримируемого газа и ее приведенное значение R_{n1} и R_{np} — Дж/(кг К); давление газа на входе нагнетателя P_{n1} — H/m^2 ; температура компримируемого газа на входе нагнетателя и ее приведенное значение T_{n1} и T_{np} — K; комплексный показатель адиабаты компримируемого газа (k-1)/k согласно данным ³ равен 0,235.

³ ОНТП 51-1-85.

Библиографический список

- Перевощиков С. И. Адаптация приведенных характеристик нагнетателей природного газа к техническому состоянию машин // Известия высших учебных заведений. Нефть и газ. – 2018. – № 1. – С. 100–105.
- Перевощиков С. И. Уточнение приведенных характеристик центробежных нагнетателей в их аналитическом виде // Известия высших учебных заведений. Нефть и газ. – 2018. – № 2. – С. 94–100.
- 3. Перевощиков С. И. Коррекция приведенных характеристик центробежных нагнетателей по результатам параметрической диагностики машин // Известия высших учебных заведений. Нефть и газ. 2015. № 6. С. 78–83.
- Перевощиков С. И. Параметрическая диагностика технического состояния центробежных нагнетателей природного газа // Известия высших учебных заведений. Нефть и газ. – 2011. – № 3 – С. 97–104.

Сведения об авторе

Перевощиков Сергей Иванович, д. т. н., консультант кафедры прикладной механики, Тюменский индустриальный университет, г. Тюмень, тел. 8(3452)467480, e-mail: perevoschikovsi@tyuiu.ru

Information about the author

Perevoschikov S. I., Doctor of Engineering, Consultant at the Department of Applied Mechanics, Industrial University of Tyumen, phone: 8(3452)467480, e-mail: perevoschikovsi@tyuiu.ru

Материаловедение и технологии конструкционных материалов

УДК 669

ТЕРМОДИНАМИЧЕСКИЕ УСЛОВИЯ КАРБИДООБРАЗОВАНИЯ ПРИ ОТПУСКЕ ВАНАДИЕВЫХ СТАЛЕЙ

THERMODYNAMIC CONDITIONS OF CARBIDE FORMING DURING TEMPERING OF VANADIUM STEELS

А. В. Афонаскин, А. Н. Венедиктов, И. М. Ковенский

A. V. Afonaskin, A. N. Venediktov, I. M. Kovenskiy

Курганский государственный университет, г. Курган Тюменский индустриальный университет, г. Тюмень

Ключевые слова: термодинамика; кинетика; отпуск; ванадиевая сталь; карбид ванадия Key words: thermodynamics; kinetics; temper; vanadium steel; vanadium carbide

Ванадий широко используется для легирования стали. Он оказывает существенное влияние на ее свойства, образуя специальный карбид $VC_{0,88}$, который обеспечивает вторичную твердость в улучшаемых ванадиевых сталях. В связи с этим представляет значительный интерес рассмотрение термодинамических условий выделения карбида $VC_{0.88}$ при отпуске закаленной стали (0,85 ат.% С и 0,65 ат.% V).

Исследуемую сталь закаливали с $1\,260\,^{\circ}\mathrm{C}$ 5 часов и подвергали изотермическому отпуску (700 $^{\circ}\mathrm{C}$) различной длительности. Преципитаты, выделяющиеся в процессе отпуска, идентифицировали с помощью электронно-графического и рентгенографического анализа карбидных осадков и с помощью электронной микроскопии тонких фольг. Результаты показывают, что в начале отпуска выделяется цементит, затем цементит растворяется, и на электронно-микроскопических снимках тонких фольг видны выделения, разрешаемые только по деформационному контрасту ферритной матрицы. Рефлексов, отвечающих каким-либо карбидным фазам, не обнаружено. Эти факты свидетельствуют о том, что в рассматриваемый период отпуска в стали образуются зоны атомов ванадия типа зон Гинье — Престона (зон ГП). При длительности отпуска 1,25 часа зоны ГП не фиксируются, и обнаруживаются тонкодисперсные карбиды ванадия $VC_{0,88}$. По-видимому, углерод, поступающий из растворяющегося цементита, насыщает зоны ГП, и последние превращаются в карбиды $VC_{0,88}$.