Химия и технология переработки нефти и газа

Chemistry and technology of oil and gas processing

УДК 665.276

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ РАБОТЫ СТАБИЛИЗАЦИОННЫХ КОЛОНН В НЕФТЕГАЗОВОЙ ПРОМЫШЛЕННОСТИ

Д. Б. Ермолин¹, Е. Р. Магарил², Р. З. Магарил³

¹Сосногорский газоперекачивающий завод ООО «Газпром переработка», г. Сосногорск, Россия

²Уральский федеральный университет имени первого Президента России Б. Н. Ельцина, г. Екатеринбург, Россия ³Тюменский индустриальный университет, г. Тюмень, Россия

Аннотация. В работе установлено, что повышение давления в стабилизационной колонне улучшает четкость разделения бутанов от пентанов, что способствует росту качества продуктов. Проведенные опытно-промышленные пробеги подтверждают возможность повышения эффективности работы стабилизационных колонн в различных процессах путем повышения давления в допустимых пределах.

Ключевые слова: ректификация; стабилизация; давление; четкость разделения

INCREASING THE EFFECTIVENESS OF STABILIZATION COLUMNS IN THE OIL AND GAS INDUSTRY

D. B. Ermolin¹, E. R. Magaril², R. Z. Magaril³

¹Sosnogorsk Gas Processing Plant LLC «Gazprom Pererabotka», Sosnogorsk, Russia ²Ural Federal University named after the first President of Russia B. N. Yeltsin ³Industrial University of Tyumen, Tyumen, Russia

Abstract. According to the results of the study, we found that increasing the pressure in a stabilization column improves the sharpness of separation of butanes from pentanes. As a result, the product quality is getting better. The pilot-industrial runs confirm the possibility of improving the effectiveness of the stabilization columns in various processes by increasing the pressure within the permissible limits.

Key words: rectification; stabilization; pressure; rectification sharpness

Процесс ректификации достаточно давно широко применяется в нефтепереработке и нефтехимии, и рассмотрен многими исследователями [1–4]. С помощью ректификации при первичной переработке нефти и газа получают прямогонные фракции, для их последующего использования в качестве сырья в процессах производства моторных топлив или в нефтехимической промышленности [1].

Важно также использование ректификации при стабилизации конечных продуктов [5]. Высокое энергопотребление в процессе ректификации обусловливает внимание к проблемам энергоэффективности установок [6, 7].

Актуальной задачей является совершенствование технологии процесса, что позволит повысить эффективность ректификации.

Как правило, выбор давления в ректификационной колонне связывают с необходимым температурным режимом [1, 8, 9]. Имеющиеся исследования влияния давления на производительность ректификационных колонн носят противоречивый характер [7, 10, 11]. Ранее было теоретически показано, что четкость разделения ректификационных колонн в процессе их эксплуатации может быть существенно улучшена повышением их рабочего давления [12, 13]. На этой основе разработаны рекомендации для обеспечения четкости разделения в колоннах деэтанизации повышением давления [14].

Значительный интерес представляет исследование возможности повышения четкости разделения путем изменения давления на других ректификационных колоннах, в том числе на колоннах стабилизации, которые обеспечивают разделение газов и жидких продуктов.

Возможности повышения эффективности работы стабилизационных колонн путем изменения рабочего давления

В технологические схемы ряда процессов нефтепереработки для повышения качества продуктов включают стабилизационные колонны. Процесс стабилизации представляет собой разделение в отгонных колоннах газов, включая бутаны, и жидких продуктов, начиная с пентанов. Процесс применяется при выделении газового бензина из попутного нефтяного газа (ПНГ), получении бензинов в различных процессах нефтепереработки, переработке деэтанизированного конденсата.

Скорость взаимодействия газа с жидкостью определяется диффузией газа в жидкость. При увеличении давления увеличивается время контакта между газовой и жидкой фазами, и благодаря увеличению плотности газов снижается поверхностное натяжение на границе газ : жидкость. Это приводит к увеличению дисперсности газов, барботирующих через жидкость, и влияние давления должно ускорять диффузионный межфазный массообмен.

Скорость диффузии G (количество вещества, продиффундировавшего за единицу времени, кг/с), согласно I закону Фика, определяется уравнением (1)

$$G = K \cdot \frac{D \cdot F}{\delta} \cdot (\pi \cdot y - P \cdot x), \tag{1}$$

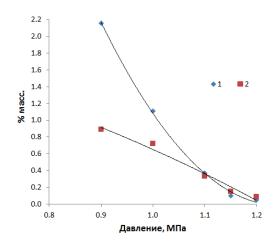
где K — коэффициент, c^2/cm^2 ; D — коэффициент диффузии молекул газа в жидкость, cm^2/c ; F — площадь контакта жидкости и газа, cm^2 ; δ — толщина пограничной пленки, cm; π — общее давление газа, Π a; P — парциальное давление диффундирующего компонента, находящегося в жидкости, Π a; y — мольная доля данного компонента в газе; x — мольная доля данного компонента в жидкости.

Увеличение общего давления газа согласно уравнению (1) приводит к увеличению скорости диффузии.

Исследование влияния давления на эффективность работы стабилизационных колонн

С целью исследования влияния изменения давления в системе ректификации на эффективность работы колонны стабилизации нами была проведена опытно-промышленная эксплуатация на базе установки НТК Сосногорского газоперекачивающего завода (ГПЗ) ООО «Газпром переработка» при постоянной производительности установки по ПНГ 280 тыс. м³/ч.

Для проведения опытно-промышленной эксплуатации колонного оборудования выбран диапазон изменения значения рабочего давления для дебутанизатора с 0,9 до 1,2 МПа. Верхний предел рассматриваемого параметра ограничен максимальным рабочим (регламентным) значением давления аппарата. Загрузка бутановой колонны по сырью колонны — 14 т/ч.


В таблице 1 и на рисунке 1 приведены результаты исследования влияния давления на работу бутановой колонны.

Данные по эффективности работы дебутанизатора 106-С3 Сосногорского ГПЗ ООО «Газпром переработка»

Параметр режима	Значение параметров при определенном давлении, МПа						
	0,90	1,00	1,10	1,15	1,20		
Температура верха, ⁰ С	60	61	63	64	66		
Температура низа, ⁰ С	128	127	128	129	128		
Данные аналитического контроля							
Содержание C_5H_{12} в пропан-бутановой фракции, %	2,16	1,11	0,37	0,10	0,05		
Содержание $C_3H_8 + C_4H_{10}$ в газовом бензине, %	0,89	0,72	0,33	0,15	0,09		

Полученные результаты опытно-промышленной эксплуатации бутановой колонны Сосногорского ГПЗ показывают, что повышение рабочего давления в дебутанизаторе при переработке ПНГ приводит к существенному улучшению четкости разделения получаемых продуктов.

Рис. 1. Влияние давления в бутановой колонне на четкость разделения: 1— содержание C_3H_{12} в пропан-бутановой фракции, % масс.; 2— содержание $C_3H_8+C_4H_{10}$ в газовом бензине, % масс.

В таблице 2 представлены информация по конструкции и среднестатистические данные по режиму работы колонн стабилизации прямогонных бензинов ряда нефтеперерабатывающих заводов (НПЗ).

Таблица 1

Статистические данные по работе колонн стабилизации прямогонных бензиновых фракций НК $-180~^{0}$ С ряда НПЗ

	Значение показателя						
Показатель	Новошахтинский НПЗ	НГДП ООО «Енисей», г. Усинск	Нижнекамский НПЗ				
Контактные устройства							
Тип	Клапанные						
Количество, шт.	31	27	40				
Расстояние, мм	700	700	700				
Значение давления, МПа							
рабочего	0,80	0,80	0,80				
допустимого	1,40	1,80	1,40				
Значение температуры, ⁰ С							
верха	68	67	67				
низа	187	190	188				
ввода сырья	170	168	174				
Кратность орошения	9,0	8,5	8,7				
Содержание C_4H_{10} в стабилизированной фракции НК–180, % масс.	1,63	1,89	1,47				
Содержание C_5H_{12} в головной фракции стабилизации, % масс.	2,38	2,24	2,17				

Из приведенных данных (см. табл. 2) следует, что все колонны стабилизации обеспечивают выход кондиционной фракции НК–180. В каждом случае наблюдается запас качества относительно требований по содержанию бутана. Содержание пентана в верхнем продукте колонн находится в диапазоне 2,17–2,38 % масс. Рассматриваемые колонны стабилизации имеют сопоставимый технологический режим эксплуатации. Температурный режим и кратность орошения соответствуют оптимальным значениям, допускаемым технологическим регламентом. Для каждого завода наблюдается значительный запас по возможности повышения рабочего давления в колонне до значений, допускаемых технологическим регламентом. Все колонны стабилизации имеют одинаковый тип контактных устройств — клапанные тарелки, их количество для рассматриваемых колонн находится в диапазоне 27–40 тарелок. Представленная в таблице 2 четкость разделения в колоннах стабилизации с изменением показателей технологического режима и количества контактных устройств почти не меняется.

На рисунке 2 и в таблице 3 приведены результаты исследования влияния давления на процесс стабилизации бензина, содержащего 6,52 % масс. C_4H_{10} и 18,8 % масс. C_5H_{12} . Опытно-промышленный пробег проводили на Сургутском заводе стабилизации конденсата (ЗСК).

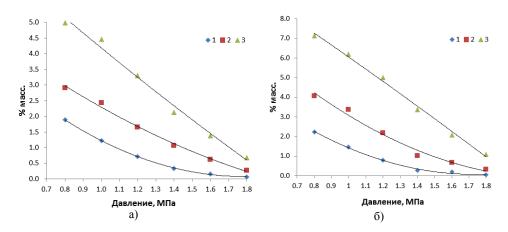


Рис. 2. Влияние давления в колонне на четкость стабилизации бензина (производительность колонны стабилизации по сырью, \mathbf{M}^3/\mathbf{u} : 1-70; 2-100; 3-140): а) содержание C_4H_{10} в стабильном бензине, % масс.; б) содержание C_5H_{12} в головной фракции стабилизации, % масс.

Таблица 3 Режим работы колонны стабилизации бензина Сургутского ЗСК при постоянной производительности и изменяющемся давлении

Показатель		Значение показателей при определенном давлении в колонне, МПа					
		1,00	1,20	1,40	1,60	1,80	
Производительность колонны стабилизации по сырью 70 м ³ /ч							
Температура верха, ⁰ С	67	68	68	67	69	70	
Температура низа, ⁰ С	190	190	192	190	192	191	
Кратность орошения	8,5	8,5	8,5	8,5	8,5	8,5	
Содержание С ₄ H ₁₀ в стабильном бензине, % масс.	1,89	1,23	0,71	0,34	0,16	0,07	
Содержание C_5H_{12} в головной фракции стабилизации, % масс.	2,24	1,47	0,78	0,26	0,19	0,06	
Производительность колонны стабилизации по сырью 100 м ³ /ч							
Температура верха, ⁰ С	67	69	68	70	70	71	
Температура низа, ⁰ С	191	190	192	191	193	192	
Кратность орошения		8,5	8,5	8,5	8,5	8,5	
Содержание С ₄ H ₁₀ в стабильном бензине, % масс.	2,91	2,43	1,66	1,07	0,62	0,27	
Содержание C_5H_{12} в головной фракции стабилизации, % масс.	4,06	3,36	2,19	1,02	0,67	0,31	
Производительность колонны стабилизации по сырью 140 м ³ /ч							
Температура верха, ⁰ С	69	72	70	71	73	72	
Температура низа, ⁰ С	193	195	196	194	196	195	
Кратность орошения	8,5	8,5	8,5	8,5	8,5	8,5	
Содержание С ₄ H ₁₀ в стабильном бензине, % масс.	4,99	4,47	3,31	2,13	1,39	0,69	
Содержание C_5H_{12} в головной фракции стабилизации, % масс.	7,14	6,20	5,01	3,37	2,08	1,10	

Полученные результаты демонстрируют возможность существенного повышения эффективности работы колонн стабилизации бензина при повышении давления, увеличивающего четкость ректификации. Так, повышение давления с 0,8 до 1,4 МПа (что соответствует допустимому давлению для стабилизационных колонн Новошахтинского и Нижнекамского НПЗ, см. табл. 2) в проведенном опытнопромышленном пробеге снизило содержание C_4H_{10} в стабильном бензине на 57–82 %, и содержание C_5H_{12} в головной фракции стабилизации на 53–88 % при разной производительности. Увеличение давления с 0,8 до 1,8 МПа (что соответствует допустимому давлению для стабилизационной колонны НГДП ООО «Енисей», г. Усинск, см. табл. 2) снизило содержание C_4H_{10} в стабильном бензине на 86–96 %, а содержание C_5H_{12} в головной фракции стабилизации на 85–97 % при разной производительности.

В таблице 4 и на рисунке 3 приведены результаты исследования влияния давления на процесс стабилизации деэтанизированного конденсата. Содержание компонентов в сырье, % масс.: $C_1 + C_2 - 0.5$; $C_3 - 12.09$; $i - C_4 - 7.14$; $n - C_4 - 10.6$; $i - C_5 - 5.47$; $n - C_5 - 5.29$. Опытно- промышленный пробег проводили на колонне стабилизации Сургутского ЗСК.

Таблица 4

Режим работы колонны стабилизации деэтанизированного конденсата при постоянной производительности и изменяющемся давлении

Показатель	Значение показателей при определенном давлении в колонне, МПа						
	0,60	0,80	1,00	1,20	1,40	1,60	
Производительность колонны стабилизации по сырью 200 м ³ /ч							
Температура верха, ⁰ С	74	74	76	75	77	76	
Температура низа, ⁰ С	197	197	200	198	196	199	
Кратность орошения	10,0	10,0	10,0	10,0	10,0	10,0	
Содержание С ₄ H ₁₀ в стабильном конденсате, % масс.	1,40	0,84	0,43	0,16	0,06	0,04	
Содержание C_5H_{12} в головной фракции стабилизации, % масс.	3,08	1,87	1,12	0,54	0,31	0,21	
Производительность колонны стабилизации по сырью 260 м ³ /ч							
Температура верха, ⁰ С	76	75	77	76	78	79	
Температура низа, ⁰ С	200	197	198	199	200	198	
Кратность орошения	10,0	10,0	10,0	10,0	10,0	10,0	
Содержание C_4H_{10} в стабильном конденсате, % масс.	2,19	1,22	0,66	0,39	0,22	0,13	
Содержание C_5H_{12} в головной фракции стабилизации, % масс.	6,45	4,06	2,81	1,22	0,53	0,26	
Производительность колонны стабилизации по сырью 300 м ³ /ч							
Температура верха, ⁰ С	75	77	78	76	79	80	
Температура низа, ⁰ С	200	197	198	196	202	201	
Кратность орошения	10,0	10,0	10,0	10,0	10,0	10,0	
Содержание С ₄ H ₁₀ в стабильном конденсате, % масс.	3,01	2,02	1,38	0,79	0,51	0,28	
Содержание C_5H_{12} в головной фракции стабилизации, % масс.	9,32	6,99	4,72	3,30	1,51	0,72	

Повышение давления с 0,6 до 1,6 в проведенном опытно-промышленном пробеге снизило содержание C_4H_{10} в стабильном конденсате на 90–97 %, и содержание C_5H_{12} в головной фракции стабилизации на 92–96 % при разной производительности.

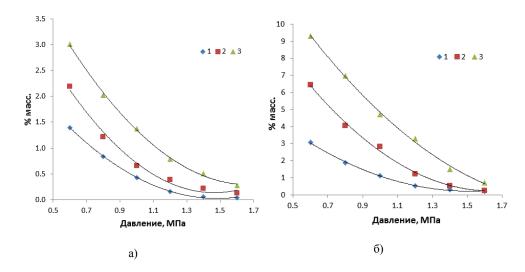


Рис. 3. Влияние давления в колонне на четкость стабилизации деэтанизированного конденсата (производительность колонны стабилизации по сырью, $m^3/4$: 1-200, 2-260, 3-300): а) содержание C_4H_{10} в стабильном конденсате, % масс.; б) содержание C_5H_{12} в головной фракции стабилизации, % масс.

Выволы

Таким образом, мы установили, что повышение давления увеличивает четкость разделения бутанов от пентанов, что положительно влияет как на баланс процесса, так и на качество получаемых продуктов. Повышение давления в стабилизационных колоннах в пределах допустимого для данных колонн может повысить эффективность их работы. Ранее был предложен подход к повышению эффективности процесса ректификации с помощью поверхностно-активных веществ (ПАВ) [15]. Представляет интерес исследование совместного применения ПАВ и повышения давления в допускаемых пределах для увеличения эффективности процессов ректификации.

Библиографический список

- 1. Мановян А. К. Технология первичной переработки нефти и природного газа: учеб. пособие для вузов. 2-е изд. М.: Химия, 2001. 566 с.
- 2. Процессы и аппараты нефтегазопереработки и нефтехимии: учеб. для вузов / А. И. Скобло [и др.]. 3-е изд. перераб. и доп. М.: Недра, 2000. 676 с.
- 3. Nag A. Distillation & Hydrocarbon Processing Practices. Tulsa; Oklahoma: PennWell Corporation, $2016-270~\rm p$.
- 4. Thermodynamic optimization of distillation columns / F. S. Pinto [et al.] // Chemical Engineering Science. 2011. Issue 66. P. 2920–2934.
 - Александров И. А. Перегонка и ректификация в нефтепереработке. М.: Химия, 1981. 352 с.
- 6. Halvorsen I. J., Skogestad S., Energy efficient distillation // Journal of Natural Gas Science and Engineering. 2011. Issue 3. P. 571–580.
- 7. Long N. V. D., Lee M. Review of Retrofitting Distillation Columns Using Thermally Coupled Distillation Sequences and Dividing Wall Columns to Improve Energy Efficiency // Journal of Chemical Engineering of Japan. 2014. Issue 47 (2). P. 87–108.
- 8. Kister H. Z., Doig, I. D. Studies of the effect of pressure on distillation heat requirements // Chemical Engineering Communications. 1981. Issue 11 (1–3). P. 1–12.

- 9. Jobson M. Energy considerations in Distillation: Fundamentals and Principles. Distillation. Vol. 1. London: Elsevier Academic Press, 2014. P. 225–270.
- 10. Liu Z. Y., Jobson M. The Effect of Operating Pressure on Distillation Column Throughput // Computer & Chemical Enginering. 1999. Vol. 23, Issue Supplement. P. S831–S834.
- Castillo F. J. L., Dhole V. R. Pressure Analysis of the Ethylene Cold-End Process. Computer & Chemical Enginering. – 1995. – P. 89–94, 1995.
- 12. Рогалев М. С., Магарил Р. 3. Повышение и оценка эффективности работы контактных устройств ректификационной колонны // Известия высших учебных заведений. Нефть и газ. 2011. № 6. С. 90–95.
- 13. Rogalev M. S., Magaril R. Z. The influence of rectification sharpness on the quality of motor fuels // WIT Transactions on Ecology and the Environment. -2014. Issue 190 (2). P. 833–843.
- 14. Влияние давления на четкость разделения колонн деэтанизации / Д. Б. Ермолин [и др.] // Известия высших учебных заведений. Нефть и газ. 2014. № 5. С. 107–113.
- 15. Acceleration of boiling in the desired conditions. Application of its effect in refinery and petrochemical industries / A. A. Ali [et al.] // WIT Transactions on Ecology and the Environment. 2014. Issue 186. P. 535–543.

Сведения об авторах

Ермолин Денис Борисович, инженер производственно-технологического отдела, Сосногорский газоперерабатывающий завод ООО «Газпром переработка», г. Сосногорск, тел. 8(82149)50576,e-mail:den-750@list.ru

Магарил Елена Роменовна, д. т. н., профессор, заведующий кафедрой экономики природопользования, Уральский федеральный университет имени первого Президента России Б. Н. Ельцина, г. Екатеринбург, тел. 8(343)3743320, e-mail: magaril67@mail.ru

Магарил Ромен Зеликович, д. т. н., профессор-консультант кафедры переработки нефти и газа, Тюменский индустриальный университет, г. Тюмень, тел. 8(3452)256925, e-mail: png@tsogu.ru

Information about the authors

Ermolin D. B., Engineer of the Production and Technological Department, Sosnogorsk Gas Processing Plant LLC «Gazprom Pererabotka», Sosnogorsk, phone: 8(82149)50576, e-mail: den-750@list.ru

Magaril E. R., Doctor of Engineering, Professor, Head of the Department of Environmental Economics, Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, phone: 8(343)3743320, e-mail: magaril67@mail.ru

Magaril R. Z., Doctor of Engineering, Professor-Consultant at the Department of Oil and Gas Processing, Industrial University of Tyumen, phone: 8(3452)256925, e-mail: png@tsogu.ru