№ 6, 2016

SIMULATION OF RESEARCH BY METHOD OF SET MODE INJECTION INTO LOW-PERMEABILITY COLLECTORS

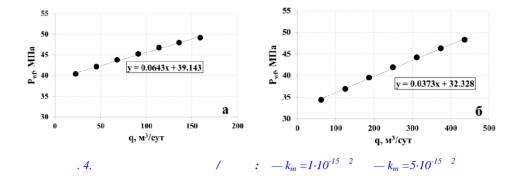
E. Z. Valeeva, G. F. Asalkhuzina, A. Ya. Davletbaev Key words: hydraulic fracturing; low-permeability collector; indicator diagram; layer pressure; hydrodynamic research (), [1-3].XY 1/4

39

40

 P_i —

```
\frac{k_f}{\mu} \frac{\partial P_f}{\partial y} \bigg|_{y=w_f/2} = \frac{k_m}{\mu} \frac{\partial P_m}{\partial y} \bigg|_{y=w_f/2}, P_f \bigg|_{y=w_f/2} = P_m \bigg|_{y=w_f/2},
                                           \frac{k_f}{\mu} \frac{\partial P_f}{\partial x} \bigg|_{x=x_f} = \frac{k_m}{\mu} \frac{\partial P_m}{\partial y} \bigg|_{x=x_f}, P_f \bigg|_{x=x_f} = P_m \bigg|_{x=x_f}.
                                                                                                                                                                    (8)
                     Ox
                                                           \frac{\partial P_f}{\partial x}\bigg|_{x=0} = \frac{\partial P_m}{\partial x}\bigg|_{x=0} = 0.
                                                                                                                                                                    (9)
                     Oy
                                                                     \frac{\partial P_m}{\partial y}\bigg|_{x=0} = 0.
                                                                                                                                                                  (10)
                                                                P_f \Big|_{\substack{x=0\\y=0}} = P_{wf}.
                                                                                                                                                                  (12)
                                              t = 100 ,
                                   (w_f/2) \cdot \frac{k_f}{\mu} \frac{\partial P_f}{\partial x} \bigg|_{x=w_f/2} + (w_f/2) \cdot \frac{k_m}{\mu} \frac{\partial P_m}{\partial y} \bigg|_{y=w_f/2} = \frac{Q_w B_w}{4h},
                                                                                                                                                                  (13)
       B_{w} —
                                                          (1)-(13) , [6].
                                        k_m - 0.1 \cdot 10^{-15} 2; 0.5 \cdot 10^{-15} 2; 1 \cdot 10^{-15} 2; 2.5 \cdot 10^{-15} 2; 5 \cdot 10^{-15} 2;
                                                        k_f — 5000·10<sup>-15</sup> <sup>2</sup>, 250 000·10<sup>-15</sup> <sup>2</sup>, 50000·10<sup>-15</sup> <sup>2</sup>,
500\ 000 \cdot 10^{-15} \quad {}^{2},\ 1\ 000\ 000 \cdot 10^{-15} \quad {}^{2},\ 1\ 500\ 000 \cdot 10^{-15} \quad {}^{2};
                                                                                                     w_f = 5.10^{-3} ;
50 , 100 , 125 , 200 ;
\mu = 1,48 ·;
                                                           \varphi = 0.188;
                                                                                                                                       k_{NTG} = 0.2; -
                                                                                                                     \beta_c = 1.10^{-8} \ 1/ ;
                                      \beta_r = 5.10^{-10} \ 1/ ;
                      \beta_0 = 1.2 \cdot 10^{-9} \text{ 1/} ;
                                                                                                                                       \beta_{w} = 5.10^{-10} \text{ 1/} \text{ ;}
                                                                P_0 = 25 ;
 S_0 = 0.41;
                                                                                                                                                        h=25 ;
                                                                      B_{yy} = 1,005;
                                                                    \varphi_f = 0.41.
                                                                                                                            « - »
—0,1 , —1 ,
                                                 2D
x_f = 100 , k_m = 1 \cdot 10^{-15} <sup>2</sup>, k_f = 100 \cdot 10^{-12} <sup>2</sup>
№ 6, 2016
                                                                                                                                                              41
```


-10 , -100 . 150 ¥ 100 ∽ 50 ≥ 100 > 50 100 150 200 250 50 100 150 200 250 150 150 ≥ 100 100 x, m 100 150 200 250 х, м $k_m = 1 \cdot 10^{-15}$ ², , — 100 . 2. **2D** $k_f = 100 \cdot 10^{-12}$, $x_f = 100$: — 0,1 . 3 $k_m = 1 \cdot 10^{-15}$ 2 $k_m = 5 \cdot 10^{-15}$ 2 , $x_f = 100$, $k_f = 100 \cdot 10^{-12}$ 2 130 105 125 130 . *3*. $-k_m=1\cdot 10^{-15}$, $-k_m=5\cdot 10^{-15}$ $-k_m = 5.10^{-15} \quad {}^{2}, \quad -k_m = 1.10^{-15} \quad {}^{2}, \quad k_f = 100.10^{-12} \quad {}^{2}, \quad x_f = 100 \quad .$ $k_m = 1.10^{-15}$ ²

 $y_{inv} = 2\sqrt{\frac{k}{\varphi\mu c_t}t} \quad . \tag{14}$

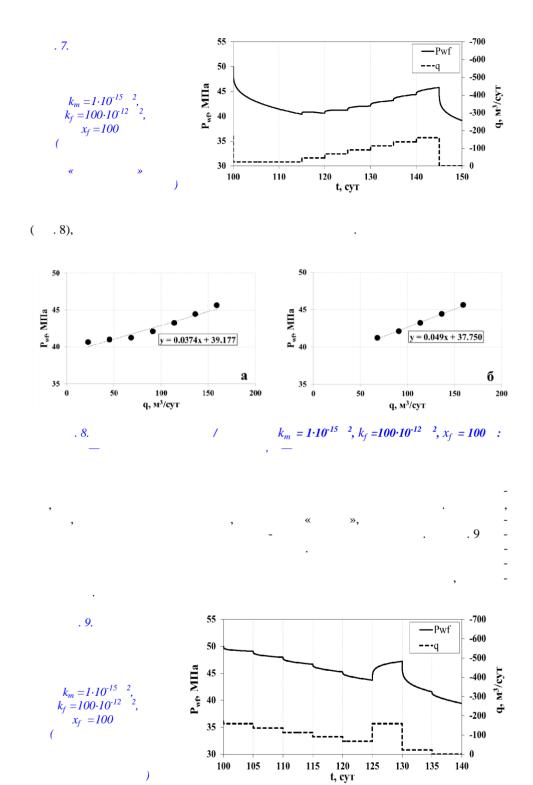
 $k_m = 5.10^{-15}$ ² ($P_{ID} \sim 32,33$).

42

 $(P_{ID} \sim 39,14)$

 $k_{m} = 1 \cdot 10^{-15} \quad 2 \qquad \qquad / \qquad \qquad 27 \quad , \qquad \qquad 39,14 \qquad . \qquad \qquad . \label{eq:km}$

 $k_{m} = 5.10^{-15} \quad ^{2}$ $y_{inv} = 59 \quad ,$


/ (14)

t,	R _{inv} ,	k _m *10 ⁻¹⁵ , ²	k _f *10 ⁻¹² , ²	x _f ,	P _{inv} ,	P _{ID} ,	P,
5	8	0,1	100	100	42,3	42,6	0,3
	19	0,5			40,5	40,6	0,1
	27	1			39,1	39,1	0,0
	42	2,5			35,8	35,9	0,1
	59	5			31,3	32,4	1,1
5	27	1	5	100	33,0	33,4	0,4
			50		37,7	37,7	0,0
			250		40,3	40,5	0,2
			500		40,8	41,2	0,4
			1500		41,2	41,5	0,3
			1000		41,2	41,7	0,5
5	27	1	100	10	35,9	34,3	-1,6
				50	39,6	39,1	-0,4
				100	39,1	39,2	0,1
				125	38,2	38,8	0,6
				200	35,6	37,3	1,7
1	27	1	100	100	41,1	42,8	1,7
3					39,9	40,3	0,4
10					37,7	37,3	-0,4
30					35,1	34,6	-0,5
50					33,5	32,8	-0,7

.

. 5. 55 . 5. 50 вШ 45 40 $k_m = 1 \cdot 10^{-15}$, $k_f = 100 \cdot 10^{-12}$, $x_f = 100$ (-200 35 -100 0 120 t, сут 125 130 135 140 100 . 6). (50 P_{wb} MIIa Р_{мр} МПа б 35 | 100 q, m³/cyT 50 150 . 6. 15 . 7

№ 6, 2016

№ 6, 2016

. 10

50 \$\frac{\text{\$\frac{4}{5}}}{2\frac{4}{40}}\$\$
\$\frac{\text{\$\frac{6}{5}}}{2\frac{4}{0}}\$\$
\$\frac{\text{\$\frac{6}{5}}}{2\frac{4}{0}}\$\$
\$\frac{\text{\$\frac{6}{5}}}{2\frac{4}{0}}\$\$
\$\frac{\text{\$\frac{6}{5}}}{2\frac{4}{0}}\$\$
\$\frac{\text{\$\frac{6}{5}}}{2\frac{100}{3}}\$\$
\$\frac{150}{200}\$\$
\$\text{\$\frac{1}{5}}\$\$
\$\frac{100}{3}\$\$
\$\frac{100}{3}\$\$
\$\frac{150}{3}\$\$
\$\frac{100}{3}\$\$
\$\frac{150}{3}\$

3. ' , -

1. Davletbaev A., Ozkan E., Slabetskiy A., Nikishov V., Usmanov T. Testing and Analysis of Wells Producing Commingled Layers in Priobskoye Field // SPE 117411. 2008.

 Davletbaev A., Baikov V., Ozkan E., Garipov T., Usmanov T., Asmandiyarov R., Slabetskiy A., Nazargalin E. Multi-Layer Steady-State Injection Test with Higher Bottomhole Pressure than the Formation Fracturing Pressure // SPE 136199. 2010.

6. Aziz K., Settari A. Petroleum reservoir simulation // York: Elsevier Applied Science Publishers. 1979.

7. . ., . . . : . . - .: . 1993. – 416 c.

Information about the authors

Valeeva E. Z., student of Department of Applied Physics, Bashkir State University, Ufa, tel. 89625461551, -mail: kafedrapf@rambler.ru

Asalkhuzina G. F., Graduate student of Department of Applied Physics, Bashkir State University, Ufa, tel. 89178053644, -mail: guzyal.asalkhuzina@ gmail.com

Davletbaev A. Ia., Candidate of Physics and Mathematics Sciences, associate professor of Department of Applied Physics, Bashkir State University, Ufa, tel. 89174812699, -mail: davletbaevay@rambler.ru

, , , . 89625461551, -mail: kafe-drapf@rambler.ru , , . , . 89178053644, -mail: guzyal. asalkhuzina@ gmail.com

, , , 89174812699, -mail: davletbaevay@rambler.ru