622.276

DEPENDENCE OF COEFFICIENTS OF SATURATION ON TIME AND COORDINATES

№ 6, 2016

75

$$p_{c} = p_{c} - p_{0}, \qquad , \qquad \qquad s_{f}$$

$$s_{0}, \qquad , \qquad , \qquad p = 0 \ s_{f} = s^{*}[1 - (1 - s^{*})\Delta\beta\Delta p_{c}].$$

$$\Delta p = p \ (r,t) - p_o = -q \left(1 - \frac{r}{R(t)} + \ln \frac{r}{R(t)} \right), \tag{6}$$

_

_

-

:

$$q = \frac{Q}{2\pi\varepsilon}, Q - , \varepsilon = \frac{k_b h}{\mu_b} - , R(t) - , R(t) - , \varepsilon = \frac{k_b h}{\mu_b} - , \varepsilon$$

, [6].

$$s(r,t) = C + C_0 \ln \frac{r}{R(t)} + C_1 \frac{r}{R(t)},$$

, 0, 1 - ,

$$s(r,t) = s_0 + (s^* - s_0)\eta(t), \quad s(R,t) = s_0, \frac{\partial s}{\partial r} \Big|_{r=R} = 0,$$

(t) - , (0) = 0, $t > 0$ (t)=1.

$$s(r,t) = s_0 + (s^* - s_0)\eta(t) \frac{1 - \frac{r}{R} + \ln\frac{r}{R(t)}}{1 - \frac{r}{R(t)} + \ln\frac{r}{R(t)}}.$$
(7)

(6) , $r = r_c$ r, (7)

$$s(r,t) = s_0 + (s^* - s_0) \frac{\Delta p(r,t)}{\Delta p(r_c,t)} = s_0 + (s^* - s_0) \frac{1 - \frac{r}{R(t)} + \ln \frac{r}{R(t)}}{1 - \frac{r_c}{R(t)} + \ln \frac{r_c}{R(t)}}.$$
(8)

•

№ 6, 2016

76

, ,

,

$$s \qquad (4),(5),(7),$$

$$k_0 = 100*10^{-15} \quad 2$$

1.
$$k_0 = 100*10^{-15} \frac{2}{2}, -\frac{1}{2}, -\frac{$$

$$s(t)$$
 (4), (5), (7)
 $0,5$ 6 $r = 385$

t,	R(t),	$p_{c}(r_{c},t),$ (6)	p(r,t), (6)	s(t) (4)	s(t) (5)	s(t) (7)	
0,5	385	6,68	0,00	0,20000	0,69701	0,20000	
1	544	7,00	0,05	0,20001	0,69689	0,20353	
5	1217	7,74	0,43	0,20006	0,69672	0,22780	
10	1721	8,06	0,66	0,20009	0,69669	0,24120	
50	3849	8,80	1,29	0,20017	0,69663	0,27336	
100	5443	9,12	1,58	0,20020	0,69662	0,28681	
365	10398	9,72	2,15	0,20028	0,69661	0,31056	
730	14705	10,04	2,46	0,20031	0,69660	0,32245	
1095	18010	10,22	2,64	0,20034	0,69660	0,32913	
1460	20797	10,36	2,77	0,20035	0,69660	0,33374	
1825	23251	10,46	2,87	0,20037	0,69660	0,33726	
2190	25470	10,54	2,95	0,20038	0,69660	0,34008	

(7)

((6

t,	Q=50 $^{3}/$, k ₀ =10*10 ⁻¹⁵ 2				Q=200 3 / , k ₀ =100*10 ⁻¹⁵ 2			Q=400 3 / , k ₀ =500*10 ⁻¹⁵ 2				
	R(t),	$p_c(r_c,t),$	p(r,t),	s(t)	R(t),	$p_c(r_c,t),$	p(r,t),	s(t)	R(t),	$p_c(r_c,t),$	p(r,t),	s(t)
1	2	3	4	5	6	7	8	9	10	11	12	13
0,5	122	14,059			385	6,683	0,000	0,2	861	0,000	0,093	0,216
1	172	14,856			544	7,002	0,049	0,204	1217	2,970	0,172	0,228
5	385	16,708	0,000	0,2	1217	7,743	0,430	0,228	2721	3,097	0,404	0,260
10	544	17,505	0,123	0,204	1721	8,062	0,664	0,241	3849	3,394	0,517	0,273
50	1217	19,358	1,076	0,228	3849	8,803	1,292	0,273	8606	3,521	0,793	0,304
100	1721	20,156	1,661	0,241	5443	9,123	1,584	0,287	12170	3,818	0,916	0,316
180	2309	20,832	2,206	0,253	7302	9,393	1,838	0,298	16328	3,945	1,021	0,326
365	3288	21,646	2,906	0,267	10398	9,719	2,149	0,311	23251	4,054	1,149	0,337
730	4650	22,444	3,625	0,281	14705	10,038	2,458	0,322	32882	4,184	1,274	0,348
1095	5695	22,911	4,057	0,289	18010	10,225	2,640	0,329	40272	4,312	1,348	0,354
1460	6577	23,242	4,367	0,294	20797	10,357	2,770	0,334	46502	4,386	1,401	0,358
1825	7353	23,499	4,610	0,298	23251	10,460	2,871	0,337	51991	4,439	1,442	0,361
2190	8055	23,709	4,809	0,301	25470	10,544	2,954	0,340	56954	4,480	1,475	0,363

, (1)

$$\nu = \frac{\sum_{i} q_{i1}}{\sum_{i} q_{i1} + \sum_{i} q_{i2}} = \frac{\sum_{i} k_{i1}^{*} \frac{\partial p_{i1}}{\partial r}}{\sum_{i} k_{i1}^{*} \frac{\partial p_{i1}}{\partial r} + \mu_{0} \sum_{i} k_{i2}^{*} \frac{\partial p_{i2}}{\partial r}}.$$
(9)

D=1, _

$$\nu = \frac{\sum_{i} k^{*}_{i1}}{\sum_{i} k^{*}_{i1} + \mu_{0} \sum_{i} k^{*}_{i2}}$$
[8]

,

t) [4]:

$$R(t) \qquad [4]:$$

$$gR^{3}(t) + \frac{q + 3g_{0}r_{c}}{2}R^{2}(t) - 6\chi(q + g_{0}r_{c})t = 0, \qquad (11)$$

 g_0 —

.

$$k_0 = 5*10^{-15} \quad {}^2 = 5 \quad , \ g_0 = 0,05 \qquad / \ . \tag{11}, Q = 18 \quad {}^3/ \quad . \tag{11}, (8) \qquad \qquad . \ 3.$$

№ 6, 2016

r = 385

№ 6, 2016

. . .

, . . ., **Leontyev S. A.**, Doctor of Engineering Sciences, professor, Industrial University of Tyumen, Tyumen, phone: 8919930-97-51,e-mail: sergleontyev@mail.ru

> Zaboeva M. I., Candidate of Engineering Science, associate professor, Industrial University of Tyumen, Tyumen, phone: 89199354793, e-mail: mi_zab@mail.ru

., Aleksandrov M. A., Candidate of of Engineering - Science, associate profssor, Industrial University of 5, Tyumen, Tyumen, phone: 89044987425, e-mail: zemenkov@tsogu.ru