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Покрытие трубопроводов под воздействием температурных нагрузок находится в
сложном напряженном состоянии, которое предполагает наличие нормальных и каса-
тельных напряжений. За счет существенной разности коэффициентов температурного
расширения трубной стали и полимерной оболочки покрытие при низких температурах
натягивается на поверхность трубы, испытывая двухосное растяжение в плоскости
поверхности и сжатие в поперечном сечении (рис. 1 а).

а) б)
Рис. 1. Нормальные (а) и касательные (б) напряжения, действующие на элемент и в

сечении покрытия при понижении температуры

Ранее была разработана упрощенная методика, в соответствии с которой могут
быть определены значения кольцевых () и продольных (z) напряжений. В покрытии
возникают и радиальные напряжения (r), величина которых определяется приближен-
но. Однако методика предлагает решение этой задачи в предположении, что значения
кольцевых напряжений по толщине покрытия не изменяются. Если не принимать во
внимание этого допущения и при определении параметров напряженного состояния
учитывать толщину самого покрытия, то при воздействии температуры также будут
возникать деформации по толщине покрытия. Таким образом, в радиальном направле-
нии будут возникать напряжения сжатия. В первом приближении можно предполагать,
что характер напряженного состояния покрытия при низких температурах качественно
совпадает с напряженным состоянием трубы, нагруженной внутренним давлением.

Кроме нормальных напряжений покрытие дополнительно испытывает напряжение
сдвига, которое также обеспечивается разностью коэффициентов температурного рас-
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ширения стали и полимера. Особенно сильно такие напряжения проявляются в адгези-
онном подклеивающем слое покрытия, который находится на границе двух материалов
с разными свойствами.

Касательные напряжения возникают за счет появления температурных деформаций
в контактирующих слоях материалов с разными значениями температурных напряже-
ний (рис. 1 б).

Таким образом, прочность покрытия определяется рядом условий:
 нормальные кольцевые (  ) и продольные ( z ) напряжения не должны пре-

вышать предела прочности полимерного слоя
   ; ,п z п     (1)

 радиальные напряжения не должны превышать величины прочности адгезии,
определенной методом отрыва

n
r a     ;                                                             (2)

 касательные напряжения не должны превышать величины прочности адгезии,
определенной методом сдвига

a
     .                                                              (3)

Для определения прочности полимерного покрытия необходимо определить все
компоненты тензора напряжений, которые состоят из трех нормальных напряжений и
шести касательных.

Трехслойное полиэтиленовое покрытие в первом приближении может быть рас-
смотрено как покрытие, состоящее из внешнего полиэтиленового слоя, подстилаемого
клеевым слоем сополимера этилена. Поскольку второй подслой из полиолефиновых
композиций и наружный полиэтиленовый слой имеют схожие значения коэффициентов
температурного расширения, то в рамках заданной модели можно предположить, что
имеет место один слой суммарной толщиной 3 мм. При этом при определении прочности
всего покрытия максимальные полученные значения механических напряжений будем
сравнивать с прочностными характеристиками того материала, на который приходится
максимум на эпюре напряжений в зависимости от толщины.

Рассмотрим трубу наружным диаметром 1 420 мм с нанесенным на нее покрытием.
Труба находится на хранении и внешним силовым факторам не подвергается. В рамках
рассматриваемой задачи необходимо определить величины напряжений в покрытии,
возникающие при понижении температуры окружающей среды до заданного значения
Т2. Начальной температурой будем считать значение равное 20 0С (Т0 = 20 0С). Вели-
чина значения начальной температуры выбрана исходя из условий нанесения покрытия
на трубу. Было установлено, что при полном остывании покрытия на трубе при темпе-
ратуре 20 0С в нем формируются остаточные напряжения, максимальное значение ко-
торых наблюдается в кольцевом направлении, в слое, располагающемся на границе
металла и полиэтилена. Таким образом, при расчете общей прочности необходимо
учитывать наличие остаточных напряжений [1, 2].

При хранении трубы в течение некоторого периода времени меняется температура
окружающей среды, и температурное воздействие оказывает существенное влияние на
напряженное состояние покрытия.

За счет большего значения коэффициента температурного расширения при нагре-
вании полиэтиленовое покрытие получает положительные деформации по величине
большие, чем основной металл трубы. Следовательно, в результате нагрева в полиэти-
леновом слое будут возникать деформации сжатия, обусловленные тем, что клеевой
слой и слой эпоксидной композиции будет удерживать покрытие на трубе и препятст-
вовать естественному расширению. При понижении температуры по причине разницы
коэффициентов  покрытие будет сжиматься гораздо сильнее металла трубы. Влияние
трубы и ее препятствие к естественному сжатию полиэтиленового слоя приведет к воз-
никновению напряжений растяжения в кольцевом и в продольном направлениях. Ис-
ходя из вышесказанного, можно сделать вывод, что наиболее опасным с точки зрения
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прочности покрытия является понижение температуры, кроме того, понижение темпе-
ратуры приводит к увеличению хрупкости полимеров и к изменению их прочностных
характеристик. Остановимся на построении математических зависимостей для опреде-
ления параметров напряженного состояния при некотором конечном значении темпе-
ратуры Т2, которая существенно ниже первоначальной, принятой равной 20 0С [2].
Продольная деформация металла может быть представлена в виде

*

_ ,m
z m m

L L
t

L
 


   (4)

где L — исходная длина трубы, м; *
mL — конечная длина трубы при заданной темпера-

туре Т2, м; m — коэффициент температурного расширения металла, 0С-1; t — перепад
температуры, определяемый как (Т2 – Т0), 0С.

Конечный размер трубы в продольном направлении составит
*
m mL L t L   . (5)

Аналогично определяется конечное значение длины полимерного покрытия при
условии, что его деформациям ничего не препятствует

* ,п пL L t L   (6)

где *
пL — конечная длина полимерного покрытия, при заданной температуре Т2, при

условии беспрепятственного деформирования, м; п — коэффициент температурного
расширения материала покрытия, 0С-1.

Если покрытие нанесено на трубу, то его свободному сжатию в продольном на-
правлении будет препятствовать металл трубы, и в покрытии возникнут растягиваю-
щие деформации, которые численно будут равны разности свободных деформаций
материала трубы и покрытия

 
* *

_
m n

z nm m n
L L L L

t
L L

  
 

     .                                    (7)

Таким образом, в продольном направлении выражение для определения величины
относительной деформации полимерного покрытия трубы может быть определено при
условии, что имеют место упругие деформации

 _
_ ,

1 1
п z пт п m п
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п п

Е Е
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

 
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 
(8)

где Еп — модуль упругости материала покрытия, МПа; п — коэффициент Пуассона
полимерного покрытия.

По толщине в радиальном направлении деформациям покрытия ничего не препят-
ствует, соответственно относительная деформация материала покрытия при изменении
температуры составит

_ .r nm
п

t   (9)

Вследствие того, что деформация происходит беспрепятственно, напряжения в ра-
диальном направлении отсутствуют. Следует учесть тот факт, что при деформирова-
нии верхних слоев в окружном направлении нижние (внутренние) слои покрытия бу-
дут испытывать сжатие, и суммарная деформация нижних слоев покрытия в радиаль-
ном направлении будет складываться из относительной деформации материала покры-

тия и деформации ( — начальная толщина покрытия; * — конечная толщина по-

крытия; t — изменение толщины стенки, обусловленное температурной деформа-
цией материала; / 2D — изменение наружного диаметра, вызванное температурны-
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ми деформациями материала трубы и покрытия в кольцевом направлении (рис. 2)).

а б

Рис. 2. Суммарные деформации полимерного слоя покрытия в радиальном направлении
(а) и расчетная схема для определения касательных напряжений (б)

Суммарные деформации в радиальном направлении могут быть представлены в виде
*
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где _r nm — суммарная относительная деформация материала покрытия в радиаль-
ном направлении; пт

* — конечное значение толщины покрытия в результате темпера-
турных деформаций.

Конечное значение толщины покрытия может быть определено из выражения

 * 1 ,
2пт п п
Dt   

    (11)

где п — толщина покрытия; мм; п_0 — первоначальное значение толщины покрытия,
мм; D — изменение диаметра трубы, вызванное температурными деформациями в
кольцевом направлении, мм.

Изменение диаметра трубы вследствие температурных деформаций может быть
рассчитано по выражению

     1 1 ,n n n m n nD D D t t             (12)

где Dп — наружный диаметр трубопровода, мм.
Предполагая, что материал покрытия работает в упругой стадии, напряжения, воз-

никающие в радиальном направлении, могут быть определены по выражению
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Относительную деформацию в кольцевом направлении можно представить как от-
ношение изменения длины окружности, вызванного температурным перепадом, к пер-
воначальному значению длины окружности
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 

2

_ 2
_ 0

,n n m n
пт

n n

D t

D


  




  



(14)

где _ пт — суммарная относительная деформация материала покрытия в кольцевом

направлении. Кольцевые напряжения могут быть найдены из закона Гука

_
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Касательные напряжения определяются по выражению

1
EG  


  


, (16)

где  — угловая деформация.
Возникновение касательных напряжений можно условно представить в виде рас-

четной схемы (рис. 2 б).
Касательные напряжения могут быть определены по выражениям
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Методика с учетом внесенных допущений реализована в программном комплексе
MathCad. Анализ выполнен для случая охлаждения полимерного покрытия на поверх-
ности стальной трубы. При расчете параметров напряженного состояния защитного
покрытия труб предполагается, что минимальная температура Т2 равна минус 50 0С.
Соответственно, все значения параметров напряженно-деформированного состояния
рассчитываются из условия, что температурный перепад t составляет минус 70 0C.
Продольные и радиальные  напряжения, в соответствии с выражениями 8 и 13, для рас-
сматриваемой трубы, при температуре окружающей среды равной минус 50 0С, распре-
делены по толщине покрытия в соответствии с функциями, представленными на рис. 3.

а б

Рис. 3. Распределение продольных (а) и радиальных (б) напряжений по толщине
покрытия при температуре минус 50 0С

В продольном направлении напряжения являются постоянными по толщине покры-
тия и при минус 50 0С составляют 10,76 МПа. Радиальные напряжения по толщине
покрытия отрицательные (сжимающие). Максимальное значение (15 кПа) наблюдается
у внутреннего слоя, контактирующего с металлом трубы. На поверхности покрытия
радиальные напряжения отсутствуют.

Кольцевые и касательные напряжения, в соответствии с выражениями 14, 16 и 17,
для рассматриваемой трубы, при температуре минус 50 0С, распределены по толщине
покрытия в соответствии с функциями, представленными на рис. 4.

Кольцевые напряжения растягивающие (положительные). По толщине покрытия
изменяются линейно. Максимальное значение (9,8 МПа) наблюдается у внутреннего
слоя, контактирующего с металлом трубы. Приближаясь к поверхности, значения этих

σZ(Y), Па

δП, мм δП, мм

δr(Y), Па
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напряжений снижаются и на поверхности принимают значение равное 7,5 МПа. Каса-
тельные напряжения растягивающие (положительные). По толщине покрытия посто-
янны. Приближенно величина касательных напряжений при температуре минус 50 0С
составляет 3,58 МПа.

а б

Рис. 4. Распределение кольцевых (а) и касательных (б) напряжений
по толщине покрытия при температуре минус 50 0С

Выводы
 Установлено, что при понижении температуры окружающего воздуха при хра-

нении труб значения напряжений в полимерном покрытии увеличиваются по модулю.
 Значения продольных и касательных напряжений по толщине покрытия при за-

данной температуре распределены равномерно, что объясняется отсутствием препят-
ствий для температурных деформаций в данном направлении.

 Распределения кольцевых и радиальных напряжений по толщине покрытия при
заданной температуре носят линейный характер. При этом кольцевые напряжения яв-
ляются растягивающими, их максимальное значение наблюдаются в слое, граничащем
с металлом трубы, что объясняется разницей коэффициентов температурного расши-
рения металла трубы и материала покрытия. Напряжения в радиальном направлении
имеют сжимающий характер, максимальное по модулю значение также соответствует
внутреннему слою покрытия, что объясняется дополнительным воздействием внешних
слоев.
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