Бурение скважин и разработка месторождений

УДК. 622.279.7

HEOБХОДИМОСТЬ СОВЕРШЕНСТВОВАНИЯ

КЛАССИФИКАЦИИ СЛОЖНЫХ РЕМОНТОВ ГАЗОВЫХ

СКВАЖИН В СОВРЕМЕННЫХ УСЛОВИЯХ ЭКСПЛУАТАЦИИ

NECESSITY OF IMPROVEMENT OF COMPLEX GAS WELL REPAIR WORKS

CLASSIFICATION IN CURRENT CONDITIONS OF WELLS OPERATION

Ю. В. Ваганов

Yu. V. Vaganov

ООО «Сервисная нефтяная компания», г. Тюмень

Ключевые слова: ремонт скважин; газовая залежь; колтюбинг; ограничение водопритока; аварийно-восстановительные работы Key words: well workover; gas pool; absorption; pressure; coil tubing; water-inflow restriction; emergency-refurbishment works

Современные условия добычи газа на промысле в Западной Сибири осложнены переходом газовых залежей в позднюю стадию эксплуатации, для которой характерно падение пластового давления, снижение дебитов газа, старение фонда скважин, различные осложнения при его эксплуатации, а также обводнение коллекторов пластовой водой.

Особенно это проблема актуальна при эксплуатации на завершающей стадии крупнейшей газовой залежи — сеноманской, территориально располагающейся на севере

Тюменской области. Сеноманские газовые залежи всех особо крупных месторождений (Уренгойского, Медвежьего, Ямбургского, Заполярного и др.) эксплуатируются в осложненных условиях падающей добычи, связанных с [1]:

- обводнением фонда скважин пластовыми и конденсационными водами;
- разрушением скелета продуктивного пласта;
- наличием заколонных перетоков газа и пластовой воды;
- возникновением межколонных давлений;
- аномально низким пластовым давлением (АНПД);
- высокой проницаемостью до 1 мкм² и более;
- высокой расчлененностью газонасыщенного пласта по проницаемости, в совокупности со значительной толщиной пласта свыше 100 м.

Сочетание многочисленных видов и подвидов осложнений, требующих ремонта и воздействия, с индивидуальными особенностями конкретных скважин создают сотни отличных друг от друга технологических схем. При этом анализ работ по капитальному ремонту скважин в условиях поздней стадии разработки, когда скважины отработали более 20 лет, показал, что основным направлением работ в эксплуатационных газовых скважинах на месторождениях Западной Сибири в настоящее время являются изоляционные работы, а также аварийно-восстановительные работы, как в процессе эксплуатации, так и в процессе ремонта скважин (до 10 % от общего числа ремонтов).

Изменившиеся условия разработки газовых и газоконденсатных месторождений Западной Сибири предъявляют ряд новых требований к технологиям ремонтновосстановительных работ:

- работы должны проводиться без глушения скважины, с применением колтюбинговой техники;
- используемые составы для блокирования продуктивного пласта в процессе глушения скважины, при проведении водоизоляционных работ, а также в процессе укрепления ПЗП должны обеспечивать сохранность фильтрационно-емкостных свойств (ФЕС) пласта;
- эффективная толщина газонасыщенного пласта не должна изменяться (уменьшаться), что обеспечит необходимые условия для дальнейшей эксплуатации скважины и подключению ее к эксплуатационному коллектору.

На основании наличия данных требований к технологиям ремонта газовых скважин можно говорить об одинаковом методологическом подходе к восстановлению бездействующих скважин в современных условиях эксплуатации газовых и газоконденсатных залежей [2].

В то же время анализ работ по капитальному ремонту скважин по Западно-Сибирскому региону показал рост количества сложных ремонтов, обусловленных измененными условиями эксплуатации газовых месторождений, с увеличением трудовых, материальных и финансовых ресурсов [3, 4]. Сложные ремонты характеризуются применением в комплексе нескольких технологических операций, использованием сложной техники, в том числе колтюбинговой установки, оборудования и инструментов, разнообразием применяемых технологических растворов и композиций, а также безопасным проведением работ, исключающим возникновение газонефтеводопроявлений, открытого фонтана и пожара.

В настоящее время к сложным ремонтам, согласно единому тарифно-квалификационному справочнику работ и профессий, относятся: возврат на выше- или нижележащий горизонт; кислотно-солевая обработка призабойной зоны пласта (ПЗП) (первая категория сложности); изоляция эксплуатационного горизонта от чуждых вод, включая ликвидацию скважин; оправка эксплуатационной колонны; гидроразрыв пласта (ГРП) и гидропескоструйная перфорация (ГПП); бурение боковых стволов; вырезка труб эксплуатационной колонны; ловильные работы (вторая категория сложности).

Кустышевым А. В. предложено разделить сложные капитальные ремонты на три большие группы: технологически сложные ремонты; технически сложные ремонты; фонтаноопасные сложные ремонты [5].

К технологически сложным ремонтам отнесены ремонты, связанные с глушением продуктивного пласта и проводимые с применением передвижного подъемного агрега-

та. Технически сложные ремонты — ремонты, проводимые без глушения скважин с помощью колтюбинговых установок. Фонтаноопасные сложные ремонты — ремонты, связанные с предотвращением и ликвидацией газопроявлений, открытых фонтанов и пожаров.

Наиболее сложными и трудоемкими видами аварийных работ, выполняемых при капитальном ремонте скважины (КРС), являются работы по ликвидации аварий, связанных с падением внутрискважинного оборудования, при этом зачастую происходят прихваты труб с последующим обрывом, что значительно осложняет работы по восстановлению работоспособности скважины. Изменившиеся условия эксплуатации газовых и газоконденсатных месторождений Западной Сибири предъявляют дополнительное требование к технологиям ведения аварийно-восстановительных работ (АВР), обусловленное АНПД и интервалами поглощения жидкости, — проведение работ в отсутствии глушения скважины, что также значительно осложняет работы [3, 4].

В связи с этим ABP необходимо проводить с помощью безмуфтовой длинномерной трубы (БДТ), которая имеет ряд преимуществ перед традиционным способом: работа при пониженном гидростатическом давлении в стволе скважины; ускорение спуска инструментов; более быстрое развертывание и свертывание подъемного агрегата и вспомогательного оборудования; сокращение расхода трубы, потребляемых материалов и трудовых ресурсов, а также нанесение минимального ущерба как ФЭС пласта, так и окружающей среде [6].

Однако при всех положительных моментах ведения работ с помощью БДТ имееются и ограничения (ограниченная вместимость барабана; отсутствие возможности поворота всей колонны; ограниченность в тяговом усилии инжектора).

Разработанные методы восстановления скважин [2] позволили расширить область применения колтюбинговых технологий в сфере капитального ремонта скважин с учетом специфики эксплуатации сеноманской залежи в современных условиях, а также указанных недостатков колтюбинговой установки [7, 8, 9]. При этом предлагаемые методы не вписываются в существующую структуру действующих видов ремонта скважин, что не позволяет классифицировать их как отдельный вид работ.

В работе [5] к технически сложным ремонтам, проводимым без глушения скважин с помощью колтюбинговых технологий, не относятся наиболее сложные и трудоемкие ремонты, связанные с извлечением аварийного скважинного оборудования. Основными операциями при ликвидации таких аварий являются ловильные работы, которым предшествуют подготовительные работы (глушение скважины, определение места обрыва и падения аварийного инструмента и его состояния, фрезерование аварийного инструмента др.). В соответствии с этим, для успешного проведения АВР и предотвращения возможных осложнений необходимо предусмотреть тщательную подготовку скважины, наземного оборудования, рабочего места, уточнить местонахождение подземного оборудования и извлекаемых предметов, а также состояние эксплуатационной колонны, правильно подобрать тип ловильного инструмента [10].

При этом в действующем классификаторе ремонтных работ к сложным работам, связанным с устранением случаев брака или последствий аварий с помощью колтюбинговых технологий, относятся только такие виды работ, которые не предусматривают извлечения оборванных и прихваченных гибких труб инструмента в процессе ремонта скважин (КРЗ-7 НТ Очистка НКТ от посторонних предметов, ловильные работы в НКТ с использованием колтюбинговых технологий [11]).

Достижение результатов по снижению обводненности продукции газовых скважин в современных условиях эксплуатации сеноманской залежи, с сохранением эффективной газонасыщенной толщины пласта, возможно при селективном способе доставки материалов в зону обработки. Это достигается за счет использования колтюбинговой установки и состава, гидрофобизирующего поровое пространство продуктивного пласта. При этом наряду со снижением продуктивности обводненных интервалов в результате изоляционных работ происходит повышение проницаемости газонасыщенных интервалов пласта с неизменной эффективной толщиной [8, 9], что также не отражено в структуре действующего классификатора ремонтных работ.

При этом на основании усовершенствованной методологии капитального ремонта скважин в современных условиях эксплуатации газовых и газоконденсатных месторождений на завершающей стадии, описанной в работе [2], предлагается дополнение к существующей структуре видов ремонта скважин (таблица).

Дополнение к структуре видов ремонта скважин

Шифр	Вид работ по капитальному ремонту скважин	Технико-технологические требования к сдаче
KP1	Ремонтно-изоляционные работы	
KP1-5HT	Восстановление газонасыщенной части продуктивного пласта от проникновения пластовой воды	Выполнение запланированного объема работ Прекращение или снижение обводненности продукции Повышение дебита газа
КР3	Устранение случаев брака или последствий аварий	
KP3-1.13HT	Извлечение прихваченных НТ при отсутствии циркуляции	Выполнение запланированного объема работ
KP3-8 HT	Устранение случаев брака или последствий аварий, допущенных в процессе ремонта скважин с использованием установки «непрерывная труба»	Выполнение запланированного объема работ

Таким образом, изменившиеся условия эксплуатации газовой сеноманской залежи определили основное направление восстановительных работ в эксплуатационных скважинах, связанных с извлечением прихваченного оборудования, а также проведения водоизоляционных работ. При этом современные условия эксплуатации газовых скважин накладывают дополнительные требования на технологии ведения восстановительных работ в скважинах — работы необходимо проводить в условиях депрессии на пласт, а также при сохранении геологических характеристик продуктивного пласта, что гарантирует дальнейшую эксплуатацию скважины и подключение ее к эксплуатационному коллектору.

Разработанные методы восстановления скважин позволяют проводить ремонты скважин с учетом изменившихся условий эксплуатации скважин. Однако отсутствие информационного блока, характеризующего капитальный ремонт по виду и способу выполнения работ в скважине, у предлагаемых методов восстановления скважин, в структуре действующего классификатора ремонтных работ, не позволяет обосновать продолжительность ремонтных работ и стоимость, что является наиболее важным показателем в современных условиях тендерного выбора подрядной организации.

При этом предложенное дополнение к структуре видов ремонта скважин позволяет определить не только продолжительность работ, а также приводит к сокращению материальных и трудовых затрат через присвоение разработанным технологиям информационного блока, согласно которому происходит обоснование всех материальных затрат. Также данная классификация необходима при обучении студентов вузов нефтегазового профиля.

Списоклитературы

- 1. Тер-Саакян Ю. Г. Литолого-петрофизические особенности строения крупных газовых месторождений Крайнего Севера // НТС. Сер.: Геология, бурение, разработка и эксплуатация газовых и газоконденсатных месторождений на суше и на шельфе. М.: ИРЦ Газпром, 1998. № 2. С. 3-7.
- 2. Ваганов Ю. В. Методология капитального ремонта скважин в современных условиях эксплуатации сеноманской залежи // Известия вузов. Нефть и газ. -2016. -№ 1. C. 34-38.
- Ваганов Ю. В. К вопросу методологического обеспечения капитального ремонта скважин на современном этапе разработки месторождений // Известия вузов. Нефть и газ. – 2014. – № 6. – С. 70-74.
- 4. Ваганов Ю. В. Кустышев Д. А., Кустышев А. В. Проблемы капитального ремонта скважин в современных условиях эксплуатации нефтяных месторождений // Проблемы сбора, подготовки и транспорта нефти и нефтепродуктов. −2015. № 1. С. 18-24.
- 5. Кустышев А. В. Разработка технологических основ и совершенствование ремонтов газовых скважин в сложных климатических условиях Крайнего севера: автореф. дис ... д-ра техн. наук: 25.00.17, 05.26.03. Уфа, 2008. 49 с.
- Кустышев А. В., Ваганов Ю. В., Кустышев И. А. и др. Оценка экологических рисков при капитальном ремонте и реконструкции нефтяных и газовых скважин // Защита окружающей среды в нефтегазовом комплексе. 2014.
 № 5. С. 25-29.

Ваганов Ю. В., Листак М. В., Калимулина М. Я. Некоторый опыт извлечения прихваченной гибкой трубы из скважины в процессе бурения бокового ствола и возможные пути совершенствования такой технологии // Известия вузов. Нефть и газ. – 2015. – № 2. – С. 42-45.

8. Ваганов Ю. В., Кустышев А. В., Мамедкаримов Э. Ш. Изоляция притока пластовых вод с помощью колтюбинговой установки на газовых месторождениях Западной Сибири // Время колтюбинга. – 2013. – № 2. – С. 6-12. Пат. 2534373 РФ Е 21 В 43/32. Способ изоляции притока пластовых вод / Ю.В. Ваганов, А. В. Кустышев,

А. К. Ягафаров и др. (РФ). – № 2013134912, заяв. 23.07.13; опубл. 27.11.14, бюл. № 33.

10. РД 153-39-023-97 Правила ведения ремонтных работ в скважинах: утв. Минэнерго РФ 18.08.97. - Краснодар:

НПО «Бурение», 1997.

11. РД 153-39.0-083-01 «Классификатор ремонтных работ в скважинах». Рекомендации по определению видов

wagan yr@mail.ru

Information about the author

Vaganov Yu. V., Candidate of Science in Engineering, associate professor, head of the production-

technology department of LLC «Service oil compa-

ny», Tyumen, phone: 8(3452)993177, e-mail:

ремонтных работ в скважинах, эксплуатируемых организациями нефтедобывающей, нефтеперерабатывающей, газовой и нефтехимической промышленности. Приказ № 5 Минэнерго РФ от 24 июня 2008 г. – М.: ОАО «ВНИИОЭНГ»,

2001. - 22 c

wagan yr@mail.ru

Сведения об авторе

Ваганов Юрий Владимирович, к. т. н., до-

иент, начальник производственно-технологического отдела ООО «Сервисная нефтяная ком-

пания», г. Тюмень, тел. 8(3452)993177, e-mail: