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Аннотация. Рассмотрена проблема, связанная с исследованием скоростей 

бурения скважин в сложнопостроенных коллекторах, решение которой пред-
ставлено в виде нейросетевой модели, учитывающей структурные, геомеха-
нические и технологические особенности системы «массив — скважина».  

Представлена возможность прогнозирования способа бурения скважин с 
различными прочностными и структурно-литологическими характеристика-
ми массива на базе нейросетевого моделирования. 

Целью данного исследования является получение математических моде-
лей для исследования вероятностно-статистических закономерностей про-
цессов бурения скважин в условиях неопределенности. 

Научной новизной выполненной работы является качественная и количе-
ственная оценки взаимовлияния геолого-технологических факторов на ско-
рость бурения скважин; поиск оптимальных режимов бурения скважин в 
условиях сложнопостроенных коллекторов на базе математического модели-
рования. 
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Abstract. The article considers the problem connected with the study of well 

drilling rates in complex reservoirs. Its solution is presented in the form of a neural 
network model that takes into account the structural, geomechanical and techno-
logical features of the «rock mass — well» system. 

The possibility of predicting the well drilling method with different strength 
and structural-lithological characteristics of the massif, based on neural network 
modeling, is presented. 

The purpose of this study is to obtain mathematical models for analysis of the 
probabilistic and statistical patterns of well drilling processes in conditions of un-
certainty.  

The scientific novelty of the work performed is the qualitative and quantitative 
assessment of the mutual influence of geological and technological factors on the 
well drilling rate; search for optimal well drilling modes in complex reservoirs on 
the basis of mathematical modeling. 
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Введение  
Для многих месторождений Среднего Приобья характерны терригенные 

отложения, представленные песчаниками, алевролитами, глинистыми по-
родами с различными структурно-текстурными особенностями [1–3].  

Для горных пород, представленных совокупностями линзовидных фор-
маций, которые не имеют единой структурной формы, связанных с зако-
номерностями формирования латеральных экранов, характерны различные 
тепловые аномалии и высокие пластовые давления.  

Подобная корреляционная закономерность может быть охарактеризова-
на как комплексирование результатов исследования зон трещиноватости и 
зон глубинных разломов, которые способствуют возникновению аномаль-
ных тепловых полей и разветвленных систем трещин, что значительно 
усложняет исследования закономерностей цифрового воссоздания геоло-
гических структур. 

Матрица трещинно-поровых коллекторов практически непроницаема, а 
в межзерновой пористости песчаников (не более 2–3 %) проницаемость 
матрицы полностью будет отсутствовать [4, 5].  

Трещинные типы коллекторов особенно развиты в толщах аргиллитов, 
что не позволит (практически полностью) их детально идентифицировать 
даже по данным геофизических исследований. Однако для песчаников и 
алевролитов баженовской и иных свит в комплексах переслаивания струк-
тур литологических типов допустима возможность идентификации неод-
нородных толщ, базирующаяся на вероятностно-статистической оценке 
изменения их структуры на этапах проектирования залежей углеводородов.   

На месторождениях Восточной Сибири коллекторы трещинно-
порового, трещинного и иных типов в толщах терригенных отложений 
представлены песчаниками и алевролитами с незначительными петрофи-
зическими характеристиками, по причине присутствия в них развитых раз-
нонаправленных систем трещин различной длины.  

В условиях таких сложнопостроенных коллекторов требуется ком-
плексный подход, включающий адекватную математическую базу для 
формирования оптимальной технологической схемы при проектировании 
бурения в условиях неопределенности поведения системы «массив — 
скважина». 

 
Объект и методы исследования  
Целью данного исследования является получение математических мо-

делей для оценки механической скорости бурения в сложнопостроенных 
породах, а также алгоритмов исследования режимов бурения скважин в 
условиях неопределенности [6, 7].  

Для написания научной работы были использованы исследования осо-
бенностей горных пород, механизмы построения нейросетевых моделей и 
способы их применения, представленные в работах Ю. Е. Катанова,  
А. К. Ягафарова, И. П. Попова и других отечественных и зарубежных уче-
ных [8, 9]. 
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Экспериментальная часть/постановка эксперимента  
Нейронная сеть представляет собой математический инструментарий, 

который способен моделировать любую непрерывную функцию 𝑓(𝑥⃗,𝑊) 
(рис. 1). 

 

 
 

Рис. 1. Схема формирования нейронной сети 

 
Нейросети представлены самообучающимися системами (алгоритмами), 

которые позволяют идентифицировать огромное количество данных при 
реализации наиболее вероятных прогнозов для принятия решений в инди-
видуальных ситуациях. 

Возможности обучения и самообучения являются одними из главных 
преимуществ нейросетей перед традиционными методами исследования 
различных закономерностей.  

С математической точки зрения процесс обучения нейросетей представ-
ляется в виде многопараметрической задачи нелинейной оптимизации. 

 Как правило, нейросети используются для моделирования взаимосвя-
зей, когда не известен точный вид данных связей между исследуемыми 
зависимыми (выходными) и независимыми (входными) переменными. 

Основу нейросети составляют искусственные нейроны, которые позво-
ляют на практике реализовать разнородные нелинейные функции для мно-
гих исследуемых переменных с привлечением любого количества скрытых 
нейронов: 

• получение моделей классификации и распознавание образов;  
• получение моделей принятия решений в условиях неопределенности;  
• получение моделей кластеризации и поиск скрытых зависимостей; 
• получение моделей прогнозирования;  
• формирование алгоритмов снижения размерностей исследуемых 

систем и т. д. 
Искусственные нейроны представлены совокупностями входных сигна-

лов в виде вещественных чисел в отрезке [0; 1], формирующих нелинейные 
функции, характеристиками которых являются весовые коэффициенты. 

Целостная структура таких функций представлена диадой нелинейного 
преобразователя и сумматора.   

Все нейроны обладают входными однонаправленными связями (синап-
сы), посредством которых происходит соединение с выходными сигналами 
синоптических сочетаний других нейронов (аксон). 

Каждый синапс (отдельная связь) характеризуется весовой характери-
стикой текущей связи в виде взвешенных сумм всех сигналов, подаваемых 
на вход. 
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В результате идентификации всех нейросетевых формаций на выходе 
будет получено единственное решение, соответствующее наиболее вероят-
ностному исходу. 

Следует отметить, что в нейросетях реализуется принцип параллельной 
обработки сигналов для объединения большого числа нейронов в отдель-
ные «слои», имеющие индивидуальные конфигурации и концепты взаимо-
действия по отношению к другим формациям (принцип послойного взаи-
модействия). Например, при интерпретации объединения геологических 
слоев в пачки, серии пачек, в массивы и т. д. 

В качестве универсального механизма построения сетевой архитектуры 
многослойных нейросетей (задачи классификации и регрессии) можно ис-
пользовать многослойные персептроны с различными вариациями переда-
точных функций или обратными (перекрестными или последовательными) 
связями. 

Стратегии построения нейросетей представлены пользовательской 
нейросетью (формируется только одна архитектура нейросети на усмотре-
ние исследователя), автоматической нейросетью (формируются множества 
различных архитектур нейросетей, среди которых выбираются оптималь-
ные с точки зрения показателей производительности), стратегией много-
кратных подвыборок (бутстреп или случайные подвыборки, основанные на 
построении ансамблей нейросетей в рамках единой архитектуры для раз-
ных подвыборок). 

Бутстреп в статистической обработке разнородных данных (Bootstrap) — 
это информационно-аналитический метод исследования вероятностных 
распределений информационных массивов, который основан на много-
кратной генерации выборок (подвыборок) методом Монте-Карло на базе 
имеющейся исходной совокупности. 

Интерпретация результатов исследования может быть реализована как 
для случаев увязки к отдельной нейросети и ансамблю нейросетей, так и по 
отдельным выборкам (контрольная, обучающая, тестовая).  

Например, можно создать нейросеть для исследования геолого-
технологических параметров конкретной скважины; исследовать структур-
но-деформационные характеристики массива при «его работе» на сжатие, 
растяжение и сдвиг (в соответствии с работой нагнетательных, добываю-
щих, поисково-разведочных и пробных скважин).    

Информационно-математическую основу любых нейросетей формируют: 
• линейная модель f(x�⃗ , W) = ∑ xj ∙ wjj ; 
• обобщенная линейная модель f(x�⃗ , W) = φ�∑ xj ∙ wjj �; 
• нелинейная модель 𝑓(𝑥⃗,𝑊) = 𝜎(∑ 𝑥𝑘 ∙ 𝑤𝑘(𝑥⃗,𝑊)𝑘 ),  

где  𝑥⃗ — вектор всех входных сигналов нейронов; 𝑊 — весовые коэффи-
циенты исходных параметров; 𝑥𝑗 — сетевые сигналы для линейной 
нейросетевой модели; 𝑤𝑗 — сетевые веса для линейной нейросетевой мо-
дели; 𝜎 — значение ширины окна используемой функции (функций) по-
строения нейросети; 𝑥𝑘 — сетевые сигналы для нелинейной нейросетевой 
модели; 𝑤𝑘 — сетевые веса для нелинейной нейросетевой модели;  
𝑗,𝑘 — соответственно, количество компонент скрытых слоев для обобщен-
ной линейной и нелинейной нейросетевых моделей. 
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Перед тем как создать нейросеть для исследования и идентификации 
оптимальных значений механической скорости и режимов бурения слож-
нопостроенных коллекторов, рассмотрим задачу прогнозирования времен-
ного ряда на базе модели АРППС (ARIMA) (модель проинтегрированного 
скользящего среднего и авторегрессии; AutoRegressive Integrated Moving 
Average), математическая основа которой представлена динамикой изме-
нения значений механической скорости разведочного бурения на первые 
200 метров проходки (рис. 2). 

Для сглаживания исходных данных (минимизации пиковых значений на 
всем интервале в соответствии с выбранной шкалой) был использован 
спектральный анализ Фурье [10]. 

 

 
 

Рис. 2. Сглаженный временной ряд 

 
На рисунке 2 прослеживаются явный полиномиальный тренд и не со-

всем явная периодичность, которая является базисной характеристикой 
временного ряда, благодаря которой можно осуществить поиск адекватной 
модели прогнозирования.  

Периодичность не всегда можно «определить на глаз», поэтому можно 
построить периодограмму, наибольший пик которой будет соответствовать 
искомому периоду для идентификации значения временного лага (уровень 
влияния одного события на другие в течение некоторого временного ин-
тервала). 

При невозможности идентификации временного лага задача прогнози-
рования на базе модели АРППС (ARIMA), а также при нейросетевом моде-
лировании значительно усложняется, поскольку увеличивается вероят-
ностный размах кросс-энтропии при выборе обучающих параметров си-
стемы «массив — скважина».  
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На рисунке 3 представлен прогноз значений механической скорости бу-
рения, достоверность (вероятность такого исхода) которого равна 0,95916 
при средневзвешенной ошибке прогноза 2,66 %. 

Размах возможных значений механической скорости бурения с учетом 
интервалов допустимых значений равен (4,69; 5,09) м/ч. 

 

 
 

Рис. 3. Прогноз механической скорости бурения 

 
Чтобы снизить такой уровень неопределенности, целесообразно создать 

альтернативный математический инструментарий для исследования пара-
метров бурения — нейросеть в задачах прогнозирования и классификации, 
выполненный, для примера, в пакете моделирования STATISTICA и со-
держащий в своей расчетной базе необходимые массивы данных [4, 7]. 

Для нейросетевой модели регрессия будет означать, что исследуемая 
переменная временного ряда является непрерывной. 

В качестве начального условия, касающегося того факта, что не будут 
использованы определенные наблюдения из общей совокупности (для 
примера, последние 10 наблюдений), будет означать, что данные случаи 
будут оставлены для кросс-проверки (сквозная проверка по модели). 

Всего в исходной базе данных было 200 случаев, следовательно, в зада-
ваемом диапазоне для построения нейросети будет использовано  
с 1 по 190 случаев, без последних 10.  

В качестве стратегии построения нейросети будет выбрана автоматиче-
ская нейронная сеть (АНС).  

Для данной стратегии тестовые подвыборки задаваться не будут, по-
скольку уже было оставлено 10 последних наблюдений для кросс-
проверки.  

Для контрольной выборки, которая используется для остановки процес-
са обучения нейросети, будут взяты 30 % от всех наблюдений в произволь-
ном порядке.  

Это работает следующим образом: если фиксируется увеличение ошиб-
ки расчетов на контрольной выборке, то это свидетельствует о преоблада-
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нии события переобучаемости нейросетевой модели и необходимости от-
клонения концепции ее дальнейшего обучения. 

Как правило, необходимое количество наблюдений, подаваемых на вход 
в нейросеть, достаточных для ее адекватного обучения, будет определено 
размером окна нейросети. 

Для автоматизированной стратегии исследования временных рядов ис-
пользование моделей РБФ (RBF) (Радиальные базисные функции, Radial 
basis functions) будет нецелесообразным по причине их ориентирования на 
периодические ряды, которые не содержат глобальный тренд.  

Поэтому основу случаев использования РБФ (RBF) составляют задачи 
интерполирования, когда исходные данные содержат множества пустых 
ячеек, которые целесообразно восстановить перед последующей их сов-
местной обработкой с цельным массивом информации. 

Нейросети, сформированные на РБФ (RBF), будут воспроизводить гаус-
совские поверхности откликов (результаты моделирования), поскольку они 
содержат промежуточные слои, состоящие из различных совокупностей 
радиальных элементов [11]. 

Поскольку функции откликов являются нелинейными, то использовать 
более одного промежуточного слоя в рамках модели восстановления про-
извольных нейросетевых зависимостей будет нецелесообразно.  

Возникает вопрос, как корректно сформировать комбинации выходов 
для скрытых радиальных элементов нейросети и выбрать их необходимое 
количество, при дальнейшей идентификации наиболее оптимального вы-
хода [12].  

Для оптимального решения данного вопроса можно представить в виде 
линейных комбинаций исследуемые радиальные элементы (в виде взве-
шенных сумм гауссовых функций с понижениями по краям и с вершиной в 
центре), чтобы характеристики выходного слоя нейросети РБФ (RBF) со-
держали линейные функции активации [13]. 

Радиальные элементы задаются своими центром и «радиусом». Поло-
жения исследуемых точек в N-мерном пространстве будет определено N 
числовыми параметрами, число которых равняется количеству весовых 
характеристик у всех линейных элементов. Следовательно, координаты 
центров всех радиальных элементов будут тождественны их «весам». Ра-
диусы (отклонения) исследуемых характеристик будут определены как 
«пороги».  

Не следует путать понятия «весов» и «порогов» для радиальных и ли-
нейных элементов, поскольку радиальные «пороги» представлены откло-
нениями, радиальные «веса» — точками. 

Однако для автоматизированной стратегии могут быть задействованы 
модели МЛП (MLP) (Многослойный персептрон, Multilayered perceptron), 
поскольку данный механизм построения нейросетей является  
универсальным для любых задач, поэтому он будет задействован в данном 
исследовании. 

В процессе линейного моделирования определение конфигураций 
нейросетей, предоставляющих возможность идентификации абсолютных 
минимумов для указанных интервалов допустимых ошибок, алгоритмиче-
ски допустимо [14].  
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При использовании нелинейных возможностей нейросетей может быть 
сформирован инструментарий их корректировки с целью снижения уров-
ней ошибок, когда нет абсолютной уверенности в том, что создание новых 
вариантов нейросетевых моделей позволит добиться еще меньших ошибок 
в исследованиях. 

В подобных допущениях очень полезно понятие поверхности ошибок, 
суть которого сводится к следующему. Каждому из «весов» и «порогов» 
нейросети (при обозначении N как общего числа свободных параметров 
модели) ставится в соответствие одно измерение в формируемом много-
мерном пространстве.  

Тогда N+1 измерение будет соответствовать ошибке нейросети, как зна-
чение-индикатор выхода за пределы области ее функционирования.  

Поэтому для любых сочетаний исследуемых «весов» в N+1-мерном 
пространстве представление в виде отдельных точек соответствующих ве-
личин ошибок нейросети позволит выделить их совокупность, называемую 
поверхностью ошибок.  

Одной из главных задач корректного обучения нейросети является по-
иск на этом многомерном подмножестве самой низкой точки [15]. 

Для традиционных моделей (например, линейных), в качестве функции 
ошибок для которых выступает сумма квадратов (SOS — Sum of squares), 
формируемая поверхность ошибок геометрически будет представлена па-
раболоидом (квадрикой) — некой гладкой поверхностью, которая похожа 
на часть поверхности сферы, с единственным минимумом. Для таких ситу-
аций локализовать этот минимум будет достаточно просто. 

В случае использования нейросетей, поверхность ошибок будет пред-
ставлена усложненным геометрическим строением, которое может содер-
жать лишь локальные минимумы (отдельные точки, расположенные ниже 
остальных в индивидуальной окрестности, но находящиеся выше чем гло-
бальный минимум), подмножества седловых точек, различные плоские 
участки, узкие и длинные геометрические «овраги» [16]. 

Аналитико-графическими средствами нельзя будет определить положе-
ние такого глобального минимума на поверхности ошибок, поэтому один 
из приоритетов адекватного обучения нейросети, по сути дела, и будет за-
ключаться в исследовании поверхности ошибок.  

При случайной конфигурации начальных «весов» и «порогов» (то есть 
если взять случайную точку на поверхности ошибок) совершенствующий-
ся алгоритм обучения постепенно отыщет глобальный минимум. Как пра-
вило, для этого вычисляется наклон (градиент) поверхности ошибок в дан-
ной случайной точке, а затем полученная информация будет использована 
для дальнейшего «продвижения вниз» относительно геометрического 
«склона».  

В итоге алгоритм остановится в некоторой нижней точке, которая, воз-
можно, окажется лишь локальным минимумом (в лучшем случае — гло-
бальным минимумом). 

Для персептронов индивидуально установленный интервал скрытых 
нейронов (для данного примера) будет содержать их минимальное и мак-
симальное количество от 5 до 20, а для обучения сети будут использованы 
50 слоев; в качестве функции ошибки будет использована Sum of squares 
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(SOS — Сумма квадратов), потому что по своей сути любой временной ряд 
представляет собой задачу регрессии.  

Для входных нейронов в качестве функций активации моделей МЛП 
(MLP), соответственно, будут заданы Tanh, Logistic, Sine, Exponential (Ги-
перболическая, Логистическая, Синусоидальная, Экспоненциальная), а для 
выходных нейронов — Tanh, Logistic, Sine, Identity, Exponential (Гипербо-
лическая, Логистическая, Синусоидальная, Тождественная, Экспоненци-
альная). 

Затухание нейросети использоваться не будет для данной задачи.  
В качестве установок для рандомизации можно выбрать начальное зна-

чение подвыборок, что привет к тому, что для всех сетей будут генериро-
ваться одни и те же обучающие контрольные подвыборки.  

Этот прием полезен в тех случаях, когда требуется посмотреть на каче-
ство модели именно на одних и тех же подвыборках. Но поскольку для 
данного примера используются разные подвыборки, то данный прием не 
требуется [17, 18].  

Итог обучения сети представлен на рисунке 4.  
Слева направо: Первый столбец — Net name (Архитектура сети), 

например, MLP-10-8-1 расшифровывается как — используется модель 
многослойного персептрона МЛП (MLP), имеющая 10 входов, 8 скрытых 
нейронов и 1 выход.  

Второй столбец — Training perf. (Производительность обучения), харак-
теризуется величиной корреляции между искомым рядом и предсказан-
ным, соответственно, на каждой подвыборке (чем значение больше, тем 
лучше сформированная сеть). 

Третий столбец — Test perf. (Контрольная производительность) — оха-
рактеризован возможной поддержкой корреляций на контрольных (обуча-
ющих) подвыборках и при минимизации между ними резких отличий, что 
позволит предположить равномерную работу нейромодели как на обуче-
нии, так и на контроле. 

Четвертый столбец пропущен, так как не было проверочных этапов (за-
ранее были оставлены 10 последних наблюдений для кросс-проверки). 

Пятый и шестой столбцы — Training error (Ошибка обучения) и Test er-
ror (Контрольная ошибка), соответственно, численные значения функцио-
нала ошибки как на обучении, так и на контроле. 

Седьмой столбец пропущен.  
Восьмой столбец — Training algorithm (Алгоритм обучения) и итерация 

(значение, указанное после аббревиатуры алгоритма), на которой этот ал-
горитм был остановлен.  

Девятый, десятый и одиннадцатый столбцы — соответственно, Error 
function (Функция ошибки) (SOS — Сумма квадратов), Hidden activation 
(Функция активизации скрытых нейронов) и Output activation (Функция 
активизации выходных нейронов). 

Для визуальной оценки качества моделей можно воспользоваться диа-
граммой рассеяния: поле X-axis определено целевой зависимостью 
(Target); поле Y-axis — выходной зависимостью (Output) (рис. 5). 

 
  

№ 1, 2021                   Нефть и газ                     63 



 

 
Ри

с.
 4

. Х
ар

ак
т

ер
ис

т
ик

и 
сф

ор
м

ир
ов

ан
ны

х 
не

йр
ос

ет
ей

 

 

64                        Нефть и газ     № 1, 2021 



 
 

Рис. 5. Диаграмма рассеяния 

 

 
 

Рис. 6. Сопоставление прогнозов по нейромоделям и искомого ряда значений  
механической скорости бурения 
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Чем ближе исследуемые точки будут к выделенной прямой линии — 
тем лучше будет качество построенных нейросетей.  

На рисунке 6 искомый ряд представлен «синим цветом», а предсказан-
ные ряды для каждой нейромодели — другой палитрой (ориентироваться 
по легенде сверху). 

Для детальной интерпретации таких преобразований используется проек-
ция временного ряда, относительно которой каждое значение прогнозного ряда 
будет построено с учетом предыдущих значений исходного ряда (см. рис. 6).  

Пусть не смущает относительная хаотичность линий — если обратить 
внимание на шкалу, видно, что значения величин сильно не отличаются 
друг от друга (см. рис. 6).  

Чтобы визуально посмотреть, как эти проекции ложатся на весь вре-
менной ряд, можно начинать построение проекционной картины сразу с 1 
наблюдения до 200, и далее, на 20 шагов вперед (1 шаг равен 1 метру) до 
отметки 220 метров (рис. 7). 

 

 
 

Рис. 7. График проекции с прогнозом на 20 метров вперед 

 
Использовать все построенные нейромодели нет смысла. Чтобы опреде-

литься с выбором, какие из них удалить, можно посмотреть, как они про-
явят свою робастность (устойчивость) на большее число шагов вперед.  

Из рисунка 7 видно, что есть модели, которые вообще не улавливают 
зависимость и их можно смело удалять — ориентируясь по легенде, это  
модели 3 и 7. 

Из оставшихся моделей выбираем те (или ту), которые имеют мини-
мальную ошибку прогноза и наибольшее значение производительности. 

Наиболее оптимальными будут нейромодели 4 и 5.  
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Следует отметить, что цветовая палитра в легенде (при отображении ре-
зультатов) изменяется по мере удаления не информативных сетей из обще-
го списка. 

Поэтому цвет ряда для модели 4 изменился на «красный», а для  
модели 5 на «зеленый» (рис. 8). Итоговый прогноз будет реализован отно-
сительно нейросетевой модели 5. 

 

 
 

Рис. 8. Прогноз механической скорости бурения на базе нейромоделей 

 
Если исходный ряд данных является сложным для исследования, то сра-

зу ожидать идеальную нейромодель не нужно. Это достигается постепен-
но, по принципу от простого к сложному.  

Далее можно анализировать качество сети.  
Сравним прогноз построенной нейросети с тестовой выборкой, размер 

которой увеличим до количества значений исходного ряда (см. рис. 8). 
Полученные ошибки прогноза, варьирующиеся в интервале  

(0,49–0,62 %), значительно ниже, чем вероятные ошибки прогноза, полу-
ченные при привлечении технологии прогнозирования на базе модели 
АРППС (ARIMA) (см. рис. 3).  

Интерпретируя математическую основу нейросетей, можно утверждать, 
что результаты прогнозирования на базе временных рядов будут идентич-
ны результатам многомерной регрессии в рамках нейромоделей, но соот-
ветствующие им области допустимых решений будут различными.  

Процедуру поиска результатов регрессии целесообразно реализовать с 
учетом классической схемы построения математических моделей: при 
наличии адекватного базиса концептуальных и информационных моделей, 
далее, после привлечения необходимых численных методов начинать с 
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простых математических моделей, постепенно увеличивать их сложность 
посредством привлечения дополнительных условий до тех пор, пока каче-
ство построенных нейромоделей не станет удовлетворительным. 

Теперь проведем классификацию временных рядов на базе нейромоде-
лей для дополнения к уже выполненному исследованию. 

Пусть исходные данные бурения содержат информацию о трех классах 
исследуемых объектов (Лопастные, Шарошечные, Алмазные долота), каж-
дый из которых характеризуется 7 признаками (Диаметр долота, Диаметр 
УБТ (Утяжеленная бурильная труба), Расход промывочной жидкости, 
Средневзвешенная плотность пород, Осевая нагрузка, Механическая ско-
рость бурения, Частота вращения).  

Для задач классификации вводится еще одна переменная кодов, соот-
ветствующая настройке параметров обучения — для контрольной (Train) и 
обучающей (Select) выборок. Для классификации будут использованы три 
стратегии построения нейросетей: пользовательская нейросеть (ПНС), ав-
томатическая нейросеть (АНС) и методы многократных подвыборок.  

Какие из наборов данных будут обучающими подвыборками, а какие 
тестовыми, исследователь сам для себя решает при формировании исход-
ных данных. 

По стратегии Subsampling (Создание подвыборок), для примера будут 
построены 10 сетей. В задачах классификации, как правило, используются 
Logistic, Tanh (соответственно, логистические и гиперболические функции), 
как на Hidden neurons (Скрытые нейроны), так и на Output neurons (Выход-
ные нейроны).  

Процедура Weight decay (Затухание) будет использована для скрытого 
слоя нейронов посредством применения процедуры регуляризации (при 
внесении скрытых слоев). Для пользовательской нейросети можно выбрать 
построение с помощью РБФ.  

Для данного примера количество сетей для обучения будет 5, а количе-
ство скрытых нейронов укажем равным 6 (выбор данного числа обуслов-
лен тем, что имеется 6 классов в данной задачи классификации, поэтому 
минимальное их число должно быть не меньше числа классов). 

Таким образом, суммарно по всем стратегиям было построено 22 моде-
ли, в которых указаны их архитектура, производительность на всех подвы-
борках, алгоритм обучения, функции ошибки и функции активации скры-
тых и выходных нейронов.  

Также построена матрица ошибок по каждой сети, в которой будет указано 
число правильно (Correct) и неправильно (Incorrect) классифицированных 
наблюдений из общего их количества (Total) по каждой модели и каждому 
классу. В итоге необходимо будет выбрать те модели (из общего списка), ко-
торые имеют наибольшую производительность по всем подвыборкам (рис. 9). 

Под производительностью модели классификации понимается процент 
корректного отнесения значений наблюдаемой переменной к значениям про-
гнозной переменной. Чем ближе величина производительности к 100 %, тем 
робастнее (устойчивее) построенная модель классифицирует исходные данные.  

Для первой построенной нейросети с архитектурой MLP 7-12-3 (архитек-
тура многослойного персептрона, 7 входов, 12 скрытых нейронов, 3 выхода) 
характерны следующие результаты. 
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Первый столбец Sample (Выборка) — тип выборки (обучающая или 
контрольная). Далее, слева направо распределены столбцы всех обрабаты-
ваемых переменных на входе (Input); после столбец целевого значения 
(Target) класса «Тип долота» и столбец выходного значения (Output), пред-
сказанного сетью для данного класса; дальше представлены столбцы с ве-
роятностями принадлежности наблюдений целевого класса к одному из 
трех (потому что было три класса переменных на входе — Алмазные, Ло-
пастные и Шарошечные долота). Аналогично представлены результаты 
классификации для остальных нейросетей.  

Принцип отнесения наблюдаемых значений к конкретному классу бази-
руется на следующем: тот класс, которому соответствует наибольшая ве-
роятность принадлежности, будет маркирован нейросистемой как исход-
ный выходной класс. Значения, выделенные «красным цветом», указывают 
на ошибку отнесения к конкретному классу. В качестве оптимальной 
нейромодели классификации будет выбрана модель 20. 

Построим лифтовые карты, которые позволяют как-то охарактеризовать 
качество классификации (рис. 10). 

Принцип построения данных карт достаточно простой. Происходит сор-
тировка всех наблюдений по вероятности принадлежности, например, к 
«шарошечным долотам». Далее выбирается количество наблюдений из 
сортированного списка в процентах (Percentile, условно ось X).  

По карте видно, что первые 30 % наблюдений составляют около 70 % 
всех точек (условно ось Y), которые принадлежат «шарошечным долотам». 
При 30 % происходит охват всего множества точек, принадлежащих «ша-
рошечным долотам».  

Идеальным случаем для лифтовых карт (карт выигрышей) будут ситуа-
ции, когда убывающая кривая по построенной модели имеет только один 
явный угол к основной функции (чтобы было условное сочетание двух 
прямых). А в данной модели присутствуют 4 таких угла (см. рис. 10). 

 

 
 

Рис. 10. Лифтовая карта 
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Лифтовая карта с откликом (Lift chart (response %)) представляется в 
следующем виде (рис. 11).  

Относительно данного типа карты сортируются все наблюдения, и она 
показывает количество (процент) правильной классификации наблюдений. 

Исходя из полученной зависимости, если возьмем 10 % отсортирован-
ных наблюдений (первая выделенная точка на оси X), то в них содержатся 
только элементы, принадлежащие «шарошечным долотам»  
(95 % — первая точка на оси Y). Если берем больше элементов (перемеща-
емся по оси X вправо), то накапливаются некоторые ошибки (спад кривой) 
и, соответственно, появляются элементы, которые не принадлежат к дан-
ному классу (снижение % по оси Y в соответствующих точках) [19, 20].  

Данная кривая убывает до тех пор, пока ну будут взяты все имеющиеся 
элементы (100 %). В данном примере значение 10 (условно ось X) форми-
руется как отношение всех элементов «шарошечных долот» к элементам 
всей выборки. В идеальном случае для лифтовой карты с откликом убыва-
ющая кривая по построенной модели должна быть прямой [21, 22].  

 

 
  

Рис. 11.  Лифтовая карта с откликом 
 
На основании выполненного нейросетевого моделирования  

был сформирован композиционный план, учитывающий полученные про-
гнозные значения механической скорости бурения на 20 метров глубже 
последней исследуемой отметки массива, на основании которого были вы-
делены интервалы бурения и соответствующие им прогнозные значения 
скоростей и способов бурения при учете физико-механических характери-
стик пород и технологических особенностей возможного бурильного обо-
рудования (рис. 12). 

Итогом выполненного нейросетевого моделирования является разделе-
ние исследуемого бурением глубинного интервала на две стадии:  

• для интервала бурения 200–214 метров величина средней механи-
ческой скорости будет соответствовать средневзвешенному арифметиче-
скому значению (5,15; 5,34) — 5,27 м/ч, преимущественно для роторного 
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способа бурения при величине оборотов ротора в интервале 40–55 об/мин. 
Величина рекомендуемой производительности насосов и соответствующей 
нагрузки варьирует в пределах 40–46 л/с и 2–9 тонн; 

• для интервала бурения 200–214 метров величина средней механи-
ческой скорости будет соответствовать средневзвешенному арифметиче-
скому значению (5,14; 5,21) — 5,18 м/ч, преимущественно для турбинного 
способа бурения с рекомендуемой нагрузкой 2–9 тонн. 

 

 
 

Рис. 12. Результаты нейросетевого моделирования 

 
Результаты и обсуждение 
Установлены закономерности изменения скорости бурения в сложнопо-

строенных коллекторах при различных технологических нагрузках. Пред-
ложена нейросетевая модель исследования способа бурения скважин, учи-
тывающая структурные особенности геологического массива. 

Результаты исследований были представлены на семинарах кафедр геологии 
месторождений нефти и газа, бурения нефтяных и газовых скважин, разработки 
и эксплуатации нефтяных и газовых месторождений, а также на научно-
практических конференциях Тюменского индустриального университета. 

 
Выводы  
• На основании использования модели прогноза временного  

ряда АРППС (ARIMA) размах возможных значений механической скоро-
сти бурения 20 метров условной скважины, с учетом интервалов допусти-
мых значений, равен (4,69; 5,09) м/ч при средневзвешенной ошибке  
прогноза 2,66 %. 
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• На основании нейросетевого моделирования при использовании 
механизмов построения нейросети, в частности, многослойного персеп-
трона и радиально-базисных функций, прогнозная скорость бурения  
20 метров условной скважины изменяется в интервале (4,85; 5,34) м/ч, с ее 
уточнением при смене способа бурения, при средневзвешенной ошибке 
прогноза 0,62 %. 

В качестве рекомендации дальнейшего исследования можно предло-
жить реализовать иерархическое комплексирование построенных нейросе-
тевых моделей и алгоритмов решений с методами машинного обучения, 
что позволит включить в общий математический базис данные технологии, 
а также методы интеллектуального анализа геолого-промысловых и техно-
логических данных. 

Полученные аппроксимационные закономерности рекомендуется ис-
пользовать при углубленном исследовании структурных особенностей 
массивов осадочного происхождения для дальнейшего прогнозирования 
скоростных характеристик бура в условиях неопределенности. 
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