

622.276

MODELING OF HORIZONTAL OIL WELL OPERATION IN THE STRATIFIED BED

S. K. Sohoshko, J. M. Kolev, N. V. Nazarova

÷

.

Key words: oil well, perforated hole, inflow profile, velocity profile, steady-state flow mode, numerical model, horizontal borehole, layered reservoir

,

, .

№ 3, 2014

$$\Delta P_{j} = \frac{\mu}{4\pi k_{h}} \sum_{i=1}^{N} Q_{i} \sum_{n=-q_{i}}^{\infty} \int_{1}^{1} \left(\sqrt{\left(x_{j} - x_{i}\right)^{2} + \left(y_{j} - y_{i}\right)^{2} + \frac{1}{\sqrt{k_{h}/k_{v}}} \left(z_{j} - z_{i} + 2nh\right)^{2}} \right)^{-1} + \left(\sqrt{\left(x_{j} - x_{i}\right)^{2} + \left(y_{j} - y_{i}\right)^{2} + \frac{1}{\sqrt{k_{h}/k_{v}}} \left(z_{j} - z_{i} + 2nh\right)^{2}} \right)^{-1} - \frac{1}{\sqrt{k_{h}/k_{v}}} \left(z_{j} - z_{i} + 2nh\right)^{2}}{\left(-0.5 \left(\sqrt{\left(x_{j} - x_{i}\right)^{2} + \left(y_{j} + y_{k}\right)^{2} + \frac{1}{\sqrt{k_{h}/k_{v}}} \left(z_{j} - z_{i} + 2nh\right)^{2}} \right)^{-1} - \frac{1}{\sqrt{k_{h}/k_{v}}} \left(z_{j} - z_{i} + 2nh\right)^{2}}{\left(-0.5 \left(\sqrt{\left(x_{j} - x_{i}\right)^{2} + \left(y_{j} - y_{k}\right)^{2} + \frac{1}{\sqrt{k_{h}/k_{v}}} \left(z_{j} - z_{i} + 2nh\right)^{2}} \right)^{-1} - \frac{1}{\sqrt{k_{h}/k_{v}}} \left(z_{j} - z_{i} + 2nh\right)^{2}}{\left(-0.5 \left(\sqrt{\left(x_{j} - x_{i}\right)^{2} + \left(y_{j} - y_{k}\right)^{2} + \frac{1}{\sqrt{k_{h}/k_{v}}} \left(z_{j} - z_{i} + 2nh\right)^{2}} \right)^{-1} - \frac{1}{\sqrt{k_{h}/k_{v}}} \left(z_{j} - z_{i} + 2nh\right)^{2}}{\left(-0.5 \left(\sqrt{\left(x_{j} - x_{i}\right)^{2} + \left(y_{j} - y_{k}\right)^{2} + \frac{1}{\sqrt{k_{h}/k_{v}}} \left(z_{j} - z_{i} + 2nh\right)^{2}} \right)^{-1} - \frac{1}{\sqrt{k_{h}/k_{v}}} \left(z_{j} - z_{i} + 2nh\right)^{2}}{\left(-0.5 \left(\sqrt{\left(x_{j} - x_{i}\right)^{2} + \left(y_{j} - y_{k}\right)^{2} + \frac{1}{\sqrt{k_{h}/k_{v}}} \left(z_{j} - z_{i} + 2nh\right)^{2}} \right)^{-1} - \frac{1}{\sqrt{k_{h}/k_{v}}} \left(z_{j} - z_{i} + 2nh\right)^{2}}{\left(-0.5 \left(\sqrt{\left(x_{j} - x_{i}\right)^{2} + \left(y_{j} - y_{k}\right)^{2} + \frac{1}{\sqrt{k_{h}/k_{v}}} \left(z_{j} - z_{i} + 2nh\right)^{2}} \right)^{-1} - \frac{1}{\sqrt{k_{h}/k_{v}}} \left(z_{j} - z_{i} + 2nh\right)^{2}}{\left(-0.5 \left(\sqrt{\left(x_{j} - x_{i}\right)^{2} + \left(y_{j} - y_{k}\right)^{2} + \frac{1}{\sqrt{k_{h}/k_{v}}} \left(z_{j} - z_{i} + 2nh\right)^{2}} \right)^{-1} - \frac{1}{\sqrt{k_{h}/k_{v}}} \left(z_{j} - z_{i} + 2nh\right)^{2}}{\left(z_{j} - z_{i} + 2nh\right)^{2}} \right)^{-1}} - \frac{1}{\sqrt{k_{h}/k_{v}}} \left(z_{j} - z_{j} + 2nh\right)^{2}}{\left(z_{j} - z_{j} + 2nh\right)^{2}} \left(z_{j} - z_{j} + 2nh\right)^{2}} \right)^{-1}} - \frac{1}{\sqrt{k_{h}/k_{v}}} \left(z_{j} - z_{j} + 2nh\right)^{2}}{\left(z_{j} - z_{j} + 2nh\right)^{2}} \left(z_{j} - z_{j} - 2nh\right)^{2}} \left(z_{j} - z_{j} - 2nh\right)^{2}} \left(z_{j} - 2nh\right)^{2}} \left(z_{j} - 2nh\right)^{2} \left(z_{$$

-

,

.

$$\begin{pmatrix}
-0.5 \\
\sqrt{(x_j - x_i)^2 + (y_j - y_{ki})^2} + \frac{1}{\sqrt{k_h/k_v}} (z_j + z_i + 2nh)^2 \\
\downarrow) \\
Q_i - \\
, '; k_h - \\
; h - \\
, ; x_i, y_i, z_i - \\
, ; y_{ki} = y_i + R_k - \\
\end{pmatrix}, i = \frac{1}{\sqrt{k_h/k_v}} (z_j + z_i + 2nh)^2 \\
\downarrow) \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + z_i + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + z_i + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + z_i + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + z_i + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + z_i + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + z_i + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + z_i + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + z_i + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + z_i + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + z_i + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2 \\
\downarrow , i = \frac{1}{\sqrt{k_h/k_v}} (z_j + 2nh)^2$$

, ;
$$R_k$$
 - , ; L_i - i.

,

_

_

 Q_i

i

.

$$\Delta P_{j} = \Delta P - \frac{\rho}{2} (V^{2} - V_{j}^{2}) - \sum_{k=1}^{j} \rho g (h + h)_{k}, \qquad (3)$$

№ 3, 2014

73

.

k, .
(2) (3)

$$\sum_{i=1}^{N} Q_{i} S_{ij} = \Delta P - \frac{\rho}{2} (V^{2} - V_{j}^{2}) - \sum_{k=1}^{j} \rho g(h + h)_{k} .$$
(4)
(4)

 Q_i .

,

$$\Delta P_{j}^{m} = \sum_{i=1}^{N_{1}} Q_{i} S_{ij}^{m} + \sum_{i=1}^{N_{2}} Q_{i} S_{ij}^{m} + \dots + \sum_{i=1}^{N_{k}} Q_{i} S_{ij}^{m} , \qquad (5)$$

$$N_{1}, N_{2}, \dots, N_{k} - k^{-}$$

$$S_{ij}^{m}$$
, m
().
(5)
(4).
Q_i.

.

1	4			
	10			
	10		./	
	0,2			
	261			
2	12			
	20			
	7	7	12	./
		0,2		
	198	198	339	
3		23		
	30			
	5	10	5	./
	0,2			
	63			154
1	30			
	4			
	10			
	20			

№ 3, 2014

1	50	
2	30,5	
	12	
	30	
	100	
	10	

73,158 ³/ .

№ 3, 2014

. 2);

(.

Sohoshko S. K., Doctor of Engineering, head of the chair «Modeling and control of oil and gas recovery processes», Tyumen State Oil and Gas University, e-mail: sksohoshko@mail.ru

Kolev J. M., assistant of the chair «Modeling and control of oil and gas recovery processes», Tyumen State Oil and Gas University, e-mail: jackkolev@gmail.com

Nazarova N. V., assistant of the chair «Modeling and control of oil and gas recovery processes», Tyumen State Oil and Gas University

№ 3, 2014