Separation of solid paraffins from heavy oil fractions in an electric field
https://doi.org/10.31660/0445-0108-2022-3-83-95
Abstract
The process of separating solid paraffins from heavy oil fractions is one of the most expensive and difficult to implement in oil refining. Dewaxing is usually carried out by the method of low-temperature crystallization of solid paraffins in the presence of a multiple excess of selective solvents. The search for other, simpler and inexpensive technologies for the isolation of solid paraffins is an urgent task. Some Russian scientists devoted their work to studying the possibility of dewaxing oil fractions in an electric field.
These article deals with the influence of the main parameters of solid paraffin hydrocarbons electrodeposition in an electric field on the qualitative parameters of the process. It has been established that the shape of the electric field and the degree of its inhomogeneity don't affect the target indicators. Increasing the electric field strength to a certain limit leads to a decrease in the required time to complete the electrodeposition process. Increasing the process temperature leads to the release of higher melting paraffins. The complete release of solid paraffins in an electric field depends on the field strength, process temperature, type and concentration of the introduced additive.
About the Authors
A. L. SavchenkovRussian Federation
Andrey L. Savchenkov, Candidate of Engineering, Associate Professor at the Department of Oil and Gas Processing
Tyumen
S. G. Agaev
Russian Federation
Slavik G. Agaev, Doctor of Engineering, Professor, Chief Researcher at the Department
Tyumen
O. P. Deryugina
Russian Federation
Olga P. Deryugina, Candidate of Engineering, Associate Professor at the Department
Tyumen
E. N. Skvortsova
Russian Federation
Elena N. Skvortsova, Candidate of Engineering, Associate Professor at the Department
Tyumen
A. G. Mozyrev
Russian Federation
Andrey G. Mozyrev, Candidate of Engineering, Head of the Department
Tyumen
References
1. Pereverzev, A. N., Bogdanov, N. F., & Roshchin, Yu. N. (1973). Proizvodstvo parafinov. Moscow, Khimiya Publ., 224 p. (In Russian).
2. Agaev, S. G., & Khalin, A. N. (2001). Dewaxing of lube stock in an electric field. Chemistry and Technology of Fuels and Oils, (3), pp. 38-42. (In Russian).
3. Agaev, S. G., Yakovlev, N. S., & Zima, E. Yu. (2011). Dewaxing of summer diesel fuel of Antipinsky refinery in a high voltage constant electric field. Neftepererabotka i neftechimiya, (10), pp. 6-8. (In Russian).
4. Agaev, S. G., & Yakovlev, N. S. (2018). Distribution of n-alkanes in the products of electric dewaxing of diesel fuel. Petroleum Chemistry, 58(3), pp. 174-178. (In English). DOI 10.1134/S0965544118030027
5. Agaev, S. G. & Gultyaev, S. V. (2006). Elektrodeparafinizatsiya dizel'nykh topliv. Izvestiya vysshikh uchebnykh zavedeniy. Neft' i gaz, (3(57)), pp. 72-76. (In Russian).
6. Roa, M., Cruz-Duarteb, J. M., & Correa, R. (2021). Study of an asphaltene electrodeposition strategy for Colombian extra-heavy crude oils boosted by the simultaneous effects of an external magnetic field and ferromagnetic composites. Fuel, 287. (In English). Available at: https://doi.org/10.1016/j.fuel.2020.119440
7. Li, B., Sun, Z., Wang, Z., Wang, J., Wang, Z., Dou, X.,… Liu, H. (2019). Effects of the particle concentration on the electro-dehydration of simulated SAGD produced ultra-heavy oil. Chemical Engineering Research and Design, 151, pp. 157-167. (In English). DOI: 10.1016/j.cherd.2019.09.004
8. Strelets, L. A., & Ilyin, S. O. (2021). Effect of enhanced oil recovery on the composition and rheological properties of heavy crude oil. Journal of Petroleum Science and Engineering, 203. (In English). Available at: https://doi.org/10.1016/ j.petrol.2021.108641
9. Kralova, I., Sjöblom, J., Øye, G., Simon, S., Grimes, B. A., & Paso, K. (2011). Heavy Crude Oils/Particle Stabilized Emulsions. Advances in Colloid and Interface Science, 169(2), pp. 106-127. (In English). DOI: 10.1016/j.cis.2011.09.001
10. Hekmatifar, M., Toghraie, D., Khosravi, A., Saberi, F., Soltani, F., Sabetvand, R., & Goldanlou, A. (2020). The study of asphaltene desorption from the iron surface with molecular dynamics method. Journal of Molecular Liquids, 318, pp. 10-19. (In English). DOI: 10.1016/j.molliq.2020.114325
11. Castillo, J., Vargasa, V., Piscitelli, V., Ordoñez, L., & Rojas, H. (2017). Study of asphaltene adsorption onto raw surfaces and iron nanoparticles by AFM force spectroscopy. Journal of Petroleum Science and Engineering, 151, pp. 248-253. (In English). DOI: 10.1016/j.petrol.2017.01.019
12. Savchenkov, A. L., & Agaev, S. G. (1989). Vliyanie maslorastvorimykh prisadok na elektrokineticheskie i depressornye svoystva distillyatnogo rafinata iz smesi neftey Zapadnoy Sibiri. Neft' i gaz, (11), pp. 41-45. (In Russian).
13. Savchenkov, A. L., & Agaev, S. G. (1991). Distribution of ester pour-point depressants in oil raffinate. Chemistry and Technology of Fuels and Oils, 27(5), pp. 274-275. (In English).
14. Agaev, S. G. & Savchenkov, A. L. (1996). Electrodeparaffinization of Urengoy oil. Chemistry and Technology of Fuels and Oils, (6), рр. 18-19. (In Russian).
15. Agaev, S. G. & Taranova, L. V. (1986). Dielectric and electrophoretic properties of wax dispersions in the presence of pour depressants. Chemistry and Technology of Fuels and Oils, 22(10), pp. 541-545. (In English).
16. Agaev S. G. & Taranova, L. V. (1986). Uluchshenie nizkotemperaturnykh svoystv vysokoparafinistykh masel s pomoshch'yu kompozitsiy slozhnykh efirov pentaeritrita i depressatora AzNII. Izvestiya vysshikh uchebnykh zavedeniy. Neft' i gaz, (1), pp. 39-43. (In Russian).
17. Dukhin, S. S., & Deryagin, B. V. (1976). Elektroforez. Moscow, Nauka Publ., 328 p. (In Russian).
Review
For citations:
Savchenkov A.L., Agaev S.G., Deryugina O.P., Skvortsova E.N., Mozyrev A.G. Separation of solid paraffins from heavy oil fractions in an electric field. Oil and Gas Studies. 2022;(3):83-95. (In Russ.) https://doi.org/10.31660/0445-0108-2022-3-83-95