Preview

Oil and Gas Studies

Advanced search

Setting the radiation frequency of a submersible hydraulic borehole vibrator

https://doi.org/10.31660/0445-0108-2022-6-83-93

Abstract

The article describes a system for setting and stabilizing the radiation frequency of submersible downhole vibrators. It is assumed that submersible downhole vibrators are used for vibration wave impact on the bottomhole formation zone in wells with a depth of 50 to 300 meters, in which the bottomhole part is structurally designed to be able to convert a comprehensive (pulsating) impact into an oscillating one. In this case downhole vibrators must be subject to additional requirements for the frequency range of the radiation and the accuracy of maintaining the frequency. The speed of rotation and the frequency of the rotary hydraulic vibrator, which is installed in the bottomhole, depends on the fluid flow through the vibrator. In the operation of a submersible vibrator as a hydraulic machine, it must be taken into account that the working fluid from the pump to the vibrator is supplied through a system of oil well tubing, which is a long hydraulic line. The authors of the article compiled a block diagram of the control system, taking into account the transfer functions of the flow controller, a long hydraulic line and the vibrator. The text gives valuable information on the possibility of using flow controllers to ensure setting and stabilization of the radiation frequency of the vibrator.

About the Authors

Yu. A. Buryan
Omsk State Technical University
Russian Federation

Yuri A. Buryan, Doctor of Engineering, Professor 

Omsk



V. N. Sorokin
Omsk State Technical University
Russian Federation

Vladimir N. Sorokin, Doctor of Engineering, Associate Professor, Professor 

Omsk



I. N. Kvasov
Omsk State Technical University
Russian Federation

Igor N. Kvasov, Candidate of Economics, Associate Professor, Professor 

Omsk



References

1. Serdyukov, S. V., & Kurlenya, M. V. (2007). Mechanism of oil production stimulation by low-intensity seismic fields. Acoustical Physics, 53(5), pp. 618-628. (In English). DOI: 10.1134/S1063771007050132

2. Apasov, T. K., Apasov, R. T., & Apasov, G. T. (2015). Metody intensifikatsii dobychi nefti i povysheniya nefteotdachi dlya mestorozhdeniy Zapadnoy Sibiri. Tyumen, Tyumen State Oil and Gas University Publ., 187 p. (In Russian).

3. Dyblenko, V. P., Kamalov, R. N., Sharifullin, R. Ya., & Tufanov, I. A. (2000). Rise in Productivity and Well Reanimation by Implementation of Vibration Waves. Moscow, Nedra Publ., 381 p. (In Russian).

4. Nevolin, V. G. (2008). Opyt primeneniya zvukovogo vozdeystviya v praktike neftedobychi Permskogo kraya. Perm, 54 p. (In Russian).

5. Seleznev, V. S., Emanov, A. F., Kashun, V. N., Glinskiy, B. M., Kovalevskiy, V. V., Manshtein, A. K.,… Geza, N. I. (2004). Aktivnaya seysmologiya s moshchnymi vibratsionnymi istochnikami. Novosibirsk, the Institute of Computational Mathematics and Mathematical Geophysics SB RAS Publ., 386 p. (In Russian).

6. Umetbaev, V. G. (1989). Geologo-tekhnicheskie meropriyatiya pri ekspluatatsii skvazhin. Moscow, Nedra Publ., 215 p. (In Russian).

7. Chichinin, I. S. (1984). Vibratsionnoe izluchenie seysmicheskikh voln. Moscow, Nedra Publ., 224 p. (In Russian).

8. Buryan, Yu. A., Sorokin, V. N., Korneev, V. S., Russkih, G. S., & Kapelyuhovski, A. A. (2014). Intensifikatsiya neftedobychi metodom vibroseysmicheskogo vozdeystviya zaglublennymi istochnikami uprugikh voln. Omsk, Omsk State Technical University Publ., 209 p. (In Russian).

9. Apasov, G. T., Grachev, S. I., Apasov, T. K., Shkurov, O. V., & Apasov, R. T. (2012). Analiz volnovogo metoda vozdeystviya na PZP v skvazhinakh s trudnoizvlekaemymi zapasami. Tyumen, Shadrinskiy Dom pechati Publ., pp. 128-136. (In Russian).

10. Ivanov, S. I. (2006). Intensifikatsiya pritoka nefti i gaza k skvazhinam. Moscow, Nedra- Biznestsentr Publ., 565 р. (In Russian).

11. Gadiev, S. M. (1977). Ispol'zovanie vibratsii v dobyche nefti. Moscow, Nedra Publ., 159 p. (In Russian).

12. Mel'nikov, V. B. (2007). Perspektivy primeneniya volnovykh tekhnologiy v neftegazovoy otrasli: akademicheskie chteniya. Moscow, RGUNG im. I. M. Gubkina Publ., 24 p. (In Russian).

13. Apasov, G. T. (2014). Vibrovolnovoy metod intensifikatsii dobychi nefti i ogranicheniya vodopritokov. Sbornik nauchno-tekhnicheskogo innovatsionnogo foruma "Neft'GazTEK". Tyumen, pp. 19-22. (In Russian).

14. Surguchev, M. L., Kuznetsov, O. L., & Simkin, E. M. (1975). Gidrodinamicheskoe akusticheskoe, teplovoe tsiklicheskoe vozdeystviya na neftyanye plasty. Moscow, Nedra Publ., 185 p. (In Russian).

15. Buryan, Yu. A., & Sorokin, V. N. Sposob intensifikatsii nefteotdachi plasta i ustroystvo dlya ego osushchestvleniya. Pat. RF 2379488. Applied: 08.08.07. Published: 20.01.10. (In Russian).

16. Buryan, Yu. A., & Sorokin, V. N. (2010). A borehole elastic waves vibration source of "a pulsating cylinder" type. Higher Educational Institutions News, (4(82)), pp. 58-62. (In Russian).

17. Yakovlev, A. L., Shamara, Yu. A., & Datsenko, E. N. (2016). Technical means for the treatment of wells with using vibration wave impact. Borehole oscillators. Science. Engineering. Technology (polytechnical bulletin), (1), pp. 139-147. (In Russian).

18. Buryan, Yu. A., & Sorokin, V. N. (2008). Control by radiation frequency of hydraulic bore-hole vibrator. Мechatronics, automation, control, (6), pp. 47-51. (In Russian).

19. Popov, D. N. (1987). Dinamika i regulirovanie gidro- i pnevmosistem. 2nd edition, revised and expanded. Moscow, Mashinostroenie Publ., 464 p. (In Russian).

20. Gamadiev, A. G. (2007). Vybor parametrov, raschet staticheskikh i dinamicheskikh kharakteristik regulyatora raskhoda topliva. Samara, Samara University Publ., 64 p. (In Russian).


Review

For citations:


Buryan Yu.A., Sorokin V.N., Kvasov I.N. Setting the radiation frequency of a submersible hydraulic borehole vibrator. Oil and Gas Studies. 2022;(6):83-93. (In Russ.) https://doi.org/10.31660/0445-0108-2022-6-83-93

Views: 162


ISSN 0445-0108 (Print)