Preview

Oil and Gas Studies

Advanced search

Oil-based magnetic fluids. Synthesis, properties, and application prospects

https://doi.org/10.31660/0445-0108-2022-6-94-109

Abstract

In this work, magnetite crude oil-based magnetic fluids have been synthesized and studied. Their physicochemical parameters (density, viscosity, magnetic phase particle size) have been determined. IR spectroscopy and thermogravimetric analysis have been performed. The magnetocaloric properties (magnetocaloric effect and heat capacity) of magnetic fluids have been determined by the microcalorimetric method in the temperature range of 278-350 K in the magnetic field changing its value from 0 to 1.0 T. The maximum value of the magnetocaloric effect of a magnetic fluid with a magnetic phase volume concentration of 0.08 is 0.0035 K at 310 K and at the magnetic induction to 1.0 T. The obtained samples of magnetic fluids have low production costs because crude oil is used as the carrier fluid and can be recommended for various applications of the petroleum and gas industry, for example, for well killing.

About the Authors

V. V. Korolev
G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
Russian Federation

Victor V. Korolev, Doctor of Chemistry, Lead Researcher

Ivanovo



A. G. Ramazanova
G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
Russian Federation

Anna G. Ramazanova, Candidate of Chemistry, Researcher 

Ivanovo



O. V. Balmasova
G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
Russian Federation

Olga V. Balmasova, Candidate of Chemistry, Researcher 

Ivanovo



V. I. Yashkova
G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
Russian Federation

Valentina I. Yashkova, Research Associate 

Ivanovo



A. I. Valeev
RN-Yuganskneftegaz Ltd.
Russian Federation

Albert I. Valeev, New Technology Project Manager, New Technology Group, UPRP & GTM, Unit of Deputy General Director — Chief Geologist 

Nefteyugansk



References

1. Ko, S., & Huh, C. (2019). Use of nanoparticles for oil production applications. Journal of Petroleum Science and Engineering, 172, pp. 97-114. (In English). DOI: 10.1016/J.PETROL.2018.09.051

2. Setoodeh, N., Darvishi, P., Lashanizadegan, A., & Esmaeilzadeh, F. (2020). A comparative study for evaluating the performance of five coatings applied on Fe3O4 nanoparticles for inhibition of asphaltene precipitation from crude oil. Journal of Dispersion Science and Technology, 41(11), pp. 1616-1632. (In English). DOI: 10.1080/01932691.2019.1634581

3. Safaei, A., Esmaeilzadeh, F., Sardarian, A., Mousavi, S., & Wang, X. (2020). Experimental investigation of wettability alteration of carbonate gas-condensate reservoirs from oil-wetting to gas-wetting using Fe3O4 nanoparticles coated with Poly (vinyl alcohol), (PVA) or Hydroxyapatite (HAp). Journal of Petroleum Science and Engineering, 184. (In English). Available at: https://doi.org/10.1016/j.petrol.2019.106530

4. Dahkaee, K. P., Sadeghi, M. T., Fakhroueian, Z., & Esmaeilzadeh, P. (2019). Effect of NiO/SiO2 nanofluids on the ultra-interfacial tension reduction between heavy oil and aqueous solution and their use for wettability alteration of carbonate rocks. Journal of Petroleum Science and Engineering, 176, pp. 11-26. (In English). DOI: 10.1016/J.PETROL.2019.01.024

5. Kalaeva, S. Z., Makarov, V. M., Markelova, N. L., & Kalaev, R. E. (2020). Obtaining Synthetic Magnetite and Ferromagnetic Fluid from Industrial Waste to Purify Water from Petroleum Products. Journal of Pollution Effects & Control, 8(1). (In English). Available at: https://doi.org/10.35248/2167-0420.20.8.240

6. Orlov, D. V., Mikhalev, Yu. O., Myshkin, N. K., & Podgorkov, V. V. (1993). Magnitnye zhidkosti v mashinostroenii. Moscow, Mashinostroenie Publ., 268 p. (In Russian).

7. Zhou, K., Zhou, X., Liu, J. & Huang, Z. (2020). Application of magnetic nanoparticles in petroleum industry: A review. Journal of Petroleum Science and Engineering, 188. (In English). Available at: https://doi.org/10.1016/j.petrol.2020.106943

8. Simonsen, G., Strand, M., & Oye, G. (2018). Potential applications of magnetic nanoparticles within separation in the petroleum industry. Journal of Petroleum Science and Engineering, 165, рр. 488-495. (In English). DOI: 10.1016/J.PETROL.2018.02.048

9. Reinoso, D., Martín-Alfonso, M. J., Luckham, P. F., & Martínez-Boza, F. J. (2020). Flow behavior and thermal resistance of xanthan gum in formate brine. Journal of Petroleum Science and Engineering, 188. (In English). Available at: https://doi.org/10.1016/J.PETROL.2019.106881

10. Zavadskiy, A. E. Zheleznov, K. N., Ramazanova, A. G., Balmasova, O. V., Korolev, V. V., & Yashkova, V. I. (1998). Vliyanie magnitnogo polya i temperatury na kristallizatsiyu vysokodispersnykh chastits magnetita. Doklady Akademii Nauk, 36(3), рр. 362-364. (In Russian).

11. Borin, D. Y., Korolev, V. V., Ramazanova, A. G., Odenbach, S., Balmasova, O. V., Yashkova, V. I., & Korolev, D. V. (2016). Magnetoviscous effect in ferrofluids with different dispersion media. Journal of Magnetism and Magnetic Materials, 416, pp. 110-116. (In English). DOI: 10.1016/j.jmmm.2016.05.024

12. Shinoda, K., Jeyadevan, B., Kasai, M., Nakatani, I., Oka, H., & Tohji, K. (2002). Journal of Magnetism and Magnetic Materials. Characterization of inherent clusters in water-based magnetite magnetic fluid, 252, pp. 141-143. (In English). DOI: 10.1016/S0304-8853(02)00711-4

13. Ramazanova, A. G., Balmasova, O. V., Korolev, D. V., & Korolev, V. V. (2011). Adsorption and Magnetotermal Phenomena of High-Disperse Magnetite. Magnetite: Structure, Properties and Application. USA, New York, Nova Science Publishers, pp. 143-178. (In English).

14. Balmasova, O. V., Ramazanova, A. G., Korolev, V. V. (2015). Adsorption of naphthenic acid on magnetite at different temperatures. Russian Journal of Physical Chemistry A, 89(3), pp. 487-490. (In English). DOI: 10.1134/S0036024415030061

15. Korolev, V. V., Korolev, D. V., & Ramazanova, A. G. (2018). The calorimetric method of evaluating the performance of magnetocaloric materials. Journal of Thermal Analysis and Calorimetry, 136, pp. 937-941. (In English). DOI: 10.1007/s10973-018-7704-y

16. Korolev, V. V., Ramazanova, A. G., & Blinov, A. V. (2002). Adsorption of surfactants on superfine magnetite. Russian Chemistry Bulletin, (51), pp. 2044-2049. (In Russian). DOI: 1066-5285/02/5111-2044

17. Knunyants, I. L. (1992). Khimicheskaya entsiklopediya: v 5 tomakh. Moscow, Bol'shaya Rossiyskaya entsiklopediya Publ. (In Russian).

18. Korolev, V. V., Ramazanova, A. G., Balmasova, O. V., & Korolev, D. V. (2013). Physico-chemical and magneto-thermal properties of magnetic fluids based on synthetic oil "Alkaren". Magnetohydrodinamics, 49(1), pp. 127-134. (In English). DOI: 10.22364/mhd.49.1-2.16


Review

For citations:


Korolev V.V., Ramazanova A.G., Balmasova O.V., Yashkova V.I., Valeev A.I. Oil-based magnetic fluids. Synthesis, properties, and application prospects. Oil and Gas Studies. 2022;(6):94-109. (In Russ.) https://doi.org/10.31660/0445-0108-2022-6-94-109

Views: 274


ISSN 0445-0108 (Print)