A dielectric investigation of structural-phase transitions in oils
https://doi.org/10.31660/0445-0108-2022-6-110-125
Abstract
The article deals with issues related to the mechanism of solidification of oils. The authors present the results of a dielectric investigation of structural-phase transitions in oils from the fields of Tyumen region in the temperature range -110 ÷ +20 °С. The dielectric relaxation of oils has been established, the values of the activation energy and dielectric relaxation time have been calculated. The phase transition determined by dielectric relaxation is interpreted as a transition from the glassy state to the associated state. The glass transition of oils, accompanied by the cessation of internal rotation in hydrocarbon molecules, is a sign of their true (or viscous) solidification. The glass transition temperature and the temperature region of the structural solidification of oils were determined. The glass transition temperature is considered to be the true pour point. The relationships between the physicochemical characteristics of oils and the parameters characterizing their dielectric properties were established, which were studied by the methods of correlation and regression analysis. The obtained regression equations can be used to predict the physico-chemical characteristics of oils in the technological processes of their extraction, field preparation and transportation.
About the Authors
M. G. ShevelevaRussian Federation
Marina G. Sheveleva, Candidate of Engineering, Associate Professor at the Department of General and Physical Chemistry
Tyumen
L. V. Taranova
Russian Federation
Lyubov V. Taranova, Candidate of Engineering, Associate Professor at the Department of Oil and Gas Processing
Tyumen
S. G. Agaev
Russian Federation
Slavik G. Agaev, Doctor of Engineering, Chief Researcher at the Department of Oil and Gas Processing
Tyumen
References
1. Chernozhukov, N. I., Kreyn, S. E., & Losikov, B. V. (1959). Khimiya mineral'nykh masel. 2nd edition, revised. Moscow, Gostoptekhizdat Publ., 415 р. (In Russian).
2. Kazakova, L. P. (1986). Tverdye uglevodorody nefti. Moscow, Khimiya Publ., 174 p. (In Russian).
3. Kitaygorodskiy, A. I. (1971). Molekulyarnye kristally. Moscow, Nauka Publ., 424 р. (In Russian).
4. Pereverzev, A. N., Bogdanov, N. F., & Roshchin, Yu. N. (1973). Proizvodstvo parafinov. Moscow, Khimiya Publ., 224 р. (In Russian).
5. Fauzi, M., Kartinin, B. N., & Chernozhukov, N. I. (1963). Vliyanie glubiny fenol'noy ochistki ostatochnogo masla na pokazateli protsessa deparafinizatsii. Izvestiya vysshikh uchebnykh zavedeniy. Neft' i gaz, (8), рр. 61-64. (In Russian).
6. Lisovskiy, A. E., Kartinin, B. N., Gukhman, L. A., & Chernozhukov, N. I. (1965). K voprosu o mekhanizme deystviya smol na kristallizatsiyu parafinov. Izvestiya vysshikh uchebnykh zavedeniy. Neft' i gaz, (6), рр. 57-61. (In Russian).
7. Agaev, S. G. (1993). О mekhanizme zastyvaniya neftey i nefteproduktov. Tezisy dokladov mezhdunarodnoy nauchno-tekhnicheskoy konferentsii "Neft' i gaz Zapadnoy Sibiri. Problemy dobychi i transportirovki". Tyumen, рp. 170-171. (In Russian).
8. Agaev, S. G., Glazunov, A. M., Gul'tyaev, S. V., & Yakovlev, N. S. (2009). Uluchshenie nizkotemperaturnykh svoystv dizel'nykh topliv. Tyumen, Tyumen State Oil and Gas University Publ., 145 р. (In Russian).
9. Likhterov, S. D., Shor, G. I., Lapin, A. P., Al'tshuler, L. A., & Kuznetsov, Yu. V. (1978). Issledovanie strukturoobrazovaniya i assotsiatsii komponentov v neftyanykh maslakh viskozimetricheskimi metodami. Khimiya i tekhnologiya topliv i masel, (6), рр. 55-58. (In Russian).
10. Frolov, I. N., Yusupov, T. N., Ziganshin, M. A., Okhotnikova, E. S., & Firsin, A. A. (2016). Relaksatsionnye i fazovye perekhody pri formirovanii struktury neftyanykh bitumov po dannym modulirovannoy DSK. Vestnik tekhnologicheskogo universiteta, 19(5), рр. 67-72. (In Russian).
11. Semikhina, L. P., Pashnina, A. M., Kovaleva, I. V., & Semikhin, D. V. (2018). Temperature and shear stress effect on reological properties of oil-disperse systems. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 4(3), рр. 36-52. (In Russian). DOI: 10.21684/2411-7978-2018-4-3-36-52
12. Mezin, A. A., Shumskayte, M. Y., Chernova, E. S., & Burukhina, A. I. (2021). Physical/chemical properties of oil from Eastern and Western Siberia deposits: integrated study by dielectric spectroscopy and NMR relaxometry methods. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 332(2), рр. 106-115. (In Russian). DOI: 10.18799/24131830/2021/2/3047
13. Saraev, D. V., Lunev, I. V., Yusupova, T. N., Tagirzyanov, M. I., Yakubov, M. R., Gusev, Yu. A., & Romanov, G. V. (2005). Dielectric spectroscopy in studying mechanisms of structure-forming oils. Oil and Gas Business, (1). (In English). Available at: http://ogbus.ru/issue/view/issue12005
14. Tukhvatullina, A. Z., Yusupova, T. N., Shaykhutdinov, A. A., & Gusev, Yu. А. (2010). Vliyanie kristallizatsii vysokomolekulyarnykh parafinov na reologicheskie i dielektricheskie svoystva nefti. Bulletin of the Kazan Technological University, (9), рр. 560-567. (In Russian).
15. Grigorov, A. B. (2011). Influence of structure of oil on its dielectrical properties. Energy Saving. Power engineering. Energy Audit, (7(89)), рр. 21-24. (In Russian).
16. Skvorcov, B. V., & Silov, E. A. (2009). Research of correlation dependences between octan number and electrodynamic parameters of hydrocarbonic products. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 11(5), рр. 64-71. (In Russian).
17. Abryutina, N. N., Abushaeva, V. V., Aref'ev, O. A., Arhangel'skaya, R. A., Bartashevich, O. V., Belonin, M. D.,… Krasavchenko, M. I. (1984). Sovremennye metody issledovaniya neftey: spravochno-metodicheskoe posobie. Leningrad, Nedra Publ., 431 p. (In Russian).
18. Borovikov, Yu. Ya. (1987). Dielektrometriya v organicheskoy khimii. Kiev, Naukova dumka Publ., 216 р. (In Russian).
19. Akhadov, Ya. Yu. (1972). Dielektricheskie svoystva chistykh zhidkostey: spravochnik. Moscow, Izdatel'stvo standartov Publ., 412 р. (In Russian).
20. Sazhin, B. I., Lobanov, A. M., Romanovskaya, O. S., Ejdel'nant, M. P., Kojkov, S. N., Shuvaev, V. P., & Borisova, M. E. (1986). Elektricheskie svoystva polimerov. 3rd edition, revised. Leningrad, Khimiya Publ., 224 p. (In Russian).
21. Agaev, S. G., Sheveleva, M. G., & Deryugina, O. P. (1990). Temperaturnodielektricheskaya spektroskopiya maslyanykh uglevodorodov iz smesi neftey Zapadnoy Sibiri. Izvestiya vysshikh uchebnykh zavedeniy. Neft' i gaz, (6), рр. 51-55. (In Russian).
22. Agaev, S. G., Sheveleva, M. G., & Shabrova, L. A. (1990). Osobennosti fazovykh perekhodov v uglevodorodakh ostatochnykh masel. Khimiya i tekhnologiya topliv i masel, (6), рр. 29-31. (In Russian).
23. Gubin, V. I., & Ostashkov, V. N. (2007). Statisticheskie metody obrabotki eksperimental'nykh dannykh. Tyumen, Tyumen State Oil and Gas University Publ., 202 p. (In Russian).
24. Kuvayskova, Yu. E. (2017). Ekonometrika. Ulyanovsk, Ulyanovsk State Technical University Publ., 166 p. (In Russian).
Review
For citations:
Sheveleva M.G., Taranova L.V., Agaev S.G. A dielectric investigation of structural-phase transitions in oils. Oil and Gas Studies. 2022;(6):110-125. (In Russ.) https://doi.org/10.31660/0445-0108-2022-6-110-125