The quality of circulating water and its impact on the operation of heat exchange equipment at petrochemical enterprises
https://doi.org/10.31660/0445-0108-2024-3-148-159
Abstract
The correct operation of heat exchange equipment has a direct impact on the quality of the products produced. The study of critical factors impeding the stable operation of equipment at petrochemical enterprises and the elimination of the main ones are of paramount importance. The primary challenge in the operation of heat exchange equipment is the quality of circulating water, which serves as the primary coolant. The analysis of circulating water and scale from an industrial site by the method of atomic emission spectrometry with inductively coupled plasma was performed, which made it possible to identify bottlenecks that impede the operation of the equipment. Scaling and the corrosive effects of water are the most detrimental. Furthermore, a methodology was devised to ascertain the elemental composition of solid deposits derived from heat exchange equipment. The malfunction of heat exchange equipment can give rise to significant issues in production. To prevent emergency production shutdowns, the authors of the article consider a method for improving the quality of circulating water by using the latest reagent, which can reduce the corrosive effect and reduce salt deposition inside heat exchangers. The proposed inhibitor offers a number of advantages, including a reduction in the environmental impact and high work efficiency.
About the Authors
O. P. DeryuginaRussian Federation
Olga P. Deryugina, Candidate of Engineering, Associate Professor
Department of Oil and Gas Processing
Tyumen
E. N. Skvortsova
Russian Federation
Elena N. Skvortsova, Candidate of Engineering, Associate Professor
Department of Oil and Gas Processing
Tyumen
A. L. Savhenkov
Russian Federation
Andrey L. Savhenkov, Candidate of Engineering, Associate Professor
Department of Oil and Gas Processing
Tyumen
D. A. Belov
Russian Federation
Dmitry A. Belov, Master's Student
Tyumen
References
1. Rulinskaya, M. A. (2019). Uluchshenie kachestva promoborotnoy vody. Povyshenie effektivnosti teploobmennogo oborudovaniya: vypusknaya kvalifikatsionnaya rabota. Tyumen, Industrial University of Tyumen Publ., 115 p. (In Russian).
2. Biryulya, V. A. (2017). Sovremennye vodooborotnye sistemy okhlazhdeniya tekhnologicheskogo oborudovaniya na promyshlennykh predpriyatiyakh i analiz gradiren razlichnykh tipov. Energetika i energosberezhenie: teoriya i praktika : materialy III Vserossiyskoy nauchno-prakticheskoy konferentsii, Kemerovo, December, 13-15, 2017. Kemerovo, T. F. Gorbachev State Technical University Publ. (In Russian). Available at: https://www.elibrary.ru/item.asp?edn=ymxnya
3. Aksenov, V. I., Galkin, Yu. A., Zaslonovskiy, V. N., & Nichkova, I. I. (2010). Promyshlennoe vodosnabzhenie. Ekaterinburg, Ural Federal University Publ., 221 p. (In Russian).
4. Ikanina, E. V., & Markov, V. F. (2017). Osnovy resursosberezheniya v khimicheskoy tekhnologii. Ekaterinburg, Ural Federal University Publ., 100 p. (In Russian).
5. Galkovsky, V. A., & Chupova, M. V. (2017). Analysis of the reduction in the heat transfer coefficient of heat exchangers due to surface contamination. Naukovedenie, 9(2). (In Russian). Available at: http://naukovedenie.ru/PDF/41TVN217.pdf
6. Chupova, M. V., & Galkovsky, V. A. (2016). Vliyanie kachestva vody na teploobmennoe oborudovanie. Energetika. Informatika. Innovatsii : materialy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii, Smolensk, November, 24-25, 2016. V 3 tomakh. Tom 1. Smolensk, Universum Publ., pp. 204-207. (In Russian).
7. Jobin, Y. (2007). Inductively coupled plasma optical emission spectrometry (ICP-OES) analysis of major components and microelements in glass. Analytics and Control, (1), pp. 64-66. (In Russian).
8. Vaytulevich, E. A., Babkina, O. V., & Svetlichnyy, V. A. (2011). Termicheskiy analiz organicheskikh polimernykh materialov i kompozitov. Tomsk, National Research Tomsk State University Publ., 56 p. (In Russian).
9. Fokina, A. K., Kiseleva, D. V., & Cherednichenko, N. V. (2018). Razrabotka metodiki opredeleniya osnovnykh (Ca, P) i primesnykh elementov (Na, Mg, Al, Si, K, Fe) metodom ISP-AES v obraztsakh biogennogo apatita. Problemy teoreticheskoy i eksperimental'noy khimii : tezisy dokladov XXVIII Rossiyskoy molodezhnoy nauchnoy konferentsii s mezhdunarodnym uchastiem, posvyashchennoy 100-letiyu so dnya rozhdeniya professora V. A. Kuznetsova, Ekaterinburg, April, 25-27, 2018. Ekaterinburg, Ural Federal University Publ., pp. 193-195. (In Russian).
10. Smagunova, A. N., Shmeleva, E. I., & Shvetsov, V. A. (2008). Algoritmy operativnogo i statisticheskogo kontrolya kachestva raboty analiticheskoy laboratorii. Novosibirsk, Nauka Publ., 59 p. (In Russian).
11. Pupyshev, A. A., & Danilova, D. A. (2007). The use of inductively coupled plasma atomic emission spectrometry for analysis of materials and ferrous metallurgy products. Analytics and Control, (2-3), pp. 131-181. (In Russian).
12. Chikirkin, I. V. (2015). Primenenie kompleksnoy programmy reagentnoy obrabotki vodooborotnoy vody na osnove otechestvennykh reagentov. Sovremennye problemy gumanitarnykh i estestvennykh nauk : materialy XXV Mezhdunarodnoy nauchno-prakticheskoy konerentsii. Moscow, November, 26-27, 2015. Moscow, Nauchno-informatsionnyy izdatel'skiy tsentr "Institut strategicheskikh issledovaniy" Publ., pp. 32-38. (In Russian).
13. Safin, D. Kh., & Khasanova, D. I. (2010). Osobennosti primeneniya fosfatnoy tekhnologii ingibirovaniya sistem vodooborota na OAO "Nizhnekamskneftekhim". Korroziya: materialy, zashchita, (7), рр. 7-12. (In Russian).
Review
For citations:
Deryugina O.P., Skvortsova E.N., Savhenkov A.L., Belov D.A. The quality of circulating water and its impact on the operation of heat exchange equipment at petrochemical enterprises. Oil and Gas Studies. 2024;(3):148-159. (In Russ.) https://doi.org/10.31660/0445-0108-2024-3-148-159