Preview

Oil and Gas Studies

Advanced search

Evaluation of the influence of multiphase fluid parameters on the natural frequencies of above-ground field pipelines

https://doi.org/10.31660/0445-0108-2025-1-100-112

Abstract

The most common method for constructing field pipelines on permafrost  is above-ground installation on supports. The span between these supports must be determined  to avoid resonance frequencies caused by vortex excitation from wind loads. While many studies have aimed to determine natural frequencies, the impact of multiphase fluids has not been thoroughly explored.

The purpose of the study is to determine how the parameters of multiphase fluids influence the natural frequencies of oscillations in above-ground field pipelines.

As a leading method, we use solution of the differential equation of the mathematical model of transverse deformations of a rod under the influence of longitudinal forces.

The study found that changes in natural frequencies resulting from changes in the parameters of the transported multiphase fluid remain within a manageable range. This assessment considers the fluid solely as an additional mass, both under no pressure conditions and at the maximum allowable pressure for which the pipeline was designed. Additionally, changes in water cut and gas factor affect the density of the overall flow, which, in turn, alters the mass of the transported fluid. This change in mass has a greater influence on natural frequencies than internal pressure.

It is demonstrated that, when determining the placement of supports for above-ground field pipelines, it is essential to use the natural frequencies that account for the additional mass, considering both no-pressure and maximum-allowable-pressure conditions.

About the Authors

D. A. Cherentsov
Industrial University of Tyumen
Russian Federation

Dmitry A. Cherentsov, Candidate of Engineering, Associate Professor at the Department of Transportation of Hydrocarbon Resources

 



S. P. Pirogov
Industrial University of Tyumen; State Agrarian University of the Northern Trans-Urals
Russian Federation

Sergey P. Pirogov, Doctor of Engineering, Professor at the Department of Applied Mechanics

 



References

1. SA 03-003-07. Raschety na prochnost' i vibratsiyu stal'nykh tekhnologicheskikh truboprovodov: normativnye dokumenty mezhotraslevogo primeneniya po voprosam promyshlennoy bezopasnosti i okhrany nedr (2007). Mosсow, Standartinform Publ., 72 p. (In Russian).

2. START-PROF (versiya R 4.87). (In Russian). Available at: https://www.truboprovod.ru/software/start

3. Cherentsov, D. A., & Pirogov, S. P. (2023). Determination of the natural frequencies of the above-ground sections of pipelines transporting an incompressible fluid. Oil and Gas Studies, (3), pp. 84-94. (In Russian). DOI: 10.31660/0445-0108-2023-3-84-94

4. Feodos'ev, V. I. (1951). O kolebaniyakh i ustoychivosti truby pri protekanii cherez nee zhidkosti. Inzhenernyy sbornik. Tom 10. Moscow, AN SSSR Publ., pp. 169-170. (In Russian).

5. Efimov, A. A. (2008). Svobodnye kolebaniya podvodnykh nefteprovodov. Oil and Gas Studies, (1(67)), pp. 49-55. (In Russian).

6. Il'in, V. P., & Sokolov, V. G. (2010). Issledovanie svobodnykh kolebaniy krivoy truby s potokom zhidkosti. Uspekhi stroitel'noy mekhaniki i teorii sooruzheniy: sbornik nauchnykh statey: k 75-letiyu so dnya rozhdeniya V. V. Petrova. Saratov, Saratov State Technical University Publ., pp. 88-93. (In Russian).

7. Sokolov, V. G., & Bereznev, A. V. (2004). Uravneniya dvizheniya krivolineynogo uchastka truboprovoda s potokom zhidkosti. Izvestiya vysshikh uchebnykh zavedeniy. Neft' i gaz, (6), pp. 76-80. (In Russian).

8. Sokolov, V. G., & Bereznev, A. V. (2005). Reshenie zadachi o svobodnykh kolebaniyakh krivolineynykh uchastkov truboprovodov s protekayushchey zhidkost'yu. Izvestiya vysshikh uchebnykh zavedeniy. Neft' i gaz, (1(49)), pp. 80-84. (In Russian).

9. Zaripov, D. M. (2016). Nelineynye kolebaniya truboprovoda pod deystviem vnutrennego udarnogo davleniya zhidkosti. Trudy Instituta mekhaniki Ufimskogo nauchnogo tsentra RAN. Vyp. 11. Ufa, Gilem Publ., pp. 136-140. (In Russian).

10. Mironov, M. A., Pyatakov, P. A., & Andreev, A. A. (2010). Forced flexural vibrations of a pipe with a liquid flow. Acoustical Physics, 56(5), pp. 739-747. (In English).

11. Shakiryanov, M. M. (2016). Spatial chaotic vibrations of a pipeline in the continuous medium under the impact of alternating internal pressure. Izvestiya Ufimskogo nauchnogo tsentra RAN, (4), рр. 35-47. (In Russian).

12. Ganiev, R. F., Il’gamov, M. A., Khakimov, A. G., & Shakiryanov, M. M. (2017). Spatial aperiodic vibrations of the pipelines under transient internal pressure. Journal of Machinery Manufacture and Reliability, 46(2), pp. 87-95. (In English).

13. Cherentsov, D. A., Pirogov, S. P., & Dorofeyev, S. M. (2014). Mathematical model of manometric spring in a viscous medium. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, (7), pp. 234-241. (In Russian).

14. Chuba, A. Yu., Smolin, N. I., & Pirogov, S. P. (2007). Opredelenie sobstvennykh chastot kolebaniy izognutykh trub nekrugovogo poperechnogo secheniya. Izvestiya vysshikh uchebnykh zavedeniy. Neft' i gaz, (1(61)), pp. 77-82. (In Russian).

15. Pirogov, S. P., Cherentsov, D. A., & Voronin, K. S. (2019). Uravneniya matematicheskoy fiziki v zadachakh truboprovodnogo transporta nefti i gaza. Tyumen, Industrial University of Tyumen Publ., 96 p. (In Russian).

16. Brill, J. P., Mukherjee, H. (1999). Multiphase flow in wells. Richardson, 384 p. (In English).

17. Rabinovich, E. Z. (1974). Gidravlika. Moscow, Nedra Publ., 296 p. (In Russian).


Review

For citations:


Cherentsov D.A., Pirogov S.P. Evaluation of the influence of multiphase fluid parameters on the natural frequencies of above-ground field pipelines. Oil and Gas Studies. 2025;(1):100-112. (In Russ.) https://doi.org/10.31660/0445-0108-2025-1-100-112

Views: 103


ISSN 0445-0108 (Print)