Development of an algorithm for determining the stress-strain state of curved sections of oil and gas pipelines made of multilayer reinforced polypropylene pipes
https://doi.org/10.31660/0445-0108-2025-4-126-136
EDN: QOZAMO
Abstract
Pipes made from polymeric, corrosion-resistant materials offer variety of advantage over traditional steel pipes. In recent years, these pipes have become increasingly common in the construction of field pipelines of different purpose. Given that these pipelines represent complex and costly infrastructure systems, the problem of ensuring their structural reliability – both during the use of advanced technologies and throughout their further operation – has a critical national-economic importance. When transporting hydrocarbons through field pipelines made of multilayer polypropylene reinforced pipes, it is essential to account for stresses induced by pipe bending and temperature drops. To properly select a bending radius that meets the required strength properties of multilayer reinforced polypropylene pipes, the authors addressed the problem of determining allowable bending radii. Additionally, the authors an algorithm developed an algorithm to assess the stress-strain state of curved sections of pipelines made from multilayer reinforced polypropylene. This work is of particular relevance. This is due to the fact that implementing the algorithm into object-oriented visual programming systems – during accumulation of sufficient databases and pipeline facilities passportization – will be possible to create software with advanced graphical interfaces using procedural programming languages.
About the Author
A. A. TolmachevRussian Federation
Artem A. Tolmachev, Applicant for a Candidate of Engineering Degree
Tyumen
References
1. Tolmachev, A. A., Ivanov, V. A. (2019). Prospects of using fiberglass and polymer-metal pipes in the oil and gas industry. Oil and Gas Studies, (6), рр.132-139. (In Russian). DOI: 10.31660/0445-0108-2019-6-132-139.
2. Tolmachev, A. A., Ivanov, V. A., & Ponomareva, T. G. (2020). To the issue of application of thermoplastic reinforced pipes for the construction of oil and gas pipelines in the Arctic. Oil and Gas Studies, 4(142), pp. 88-99. (In Russian). DOI: 10.31660/0445-0108-2020-4-88-99.
3. Tolmachev, A. A., Ivanov, V. A., & Majer, A. V. (2022). Use of polypropylene insulated reinforced pipes for oil pipelines construction in the Arctic. Equipment and technologies for oil and gas complex. 4(130), pp. 46-51. (In Russian). DOI: 10.33285/1999-6934-2022-4(130)-46-51
4. Ivanov, V. A. & A. A. Tolmachev. Patent No. 2793376 C1 Rossijskaya Federaciya, MPK F16L 9/12. Mnogoslojnaya polipropilenovaya armirovannaya truba. No. 2022130670. Applied: 24.11.2022. Published: 31.03.2023. (In Russian).
5. Rashchepkin, A. K., Salagaeva, E. V., Cherkasov, N. M., & Gladkih, I. F. (2005). Novye otechestvennye tekhnologii pri izgotovlenii i montazhe truboprovodnyh sistem neftegazovoj infrastruktury iz kombinirovannyh trub na osnove termoplastov. Neftegazovoe delo, (2), p. 8. (In Russian).
6. Vinogradov, D. A., Fattakhov, M. M., Ratshepkin, A. K., Sergeev, S. M., & Glukhova, O. V. (2006). Polymeric energy and resource-saving pipelines. Bashkirskij himicheskij zhurnal, 13(4), pp. 74-75. (In Russian).
7. Tolmachev A. A., & Tolmachev A. A. (2024).Development of a mathe-matical model of the stress-strain state of a multilayer polypropylene reinforced pipe.Scientific journal of russian gas society, 1(43), pp. 36-42. (In Russian).
8. Serebrennikov, A. A., Lavrov, I. G., & Konev V. V. (2015). The impact of negative temperatures on the condition of polyethylene pipes in bending. Ingineering journal of Don, 4(38), p. 115. (In Russian).
9. Serebrennikov, A. A. & Lavrov, I. G. (2007). Determinai ion oi-pirmissble radii of polyethylene peso pipes" bend depending on the temperature factor. Oil and Gas Studies, 2(62), рр. 42-44. (In Russian).
10. Nasibullaev, I. Sh. (2021). Application of free software for processing and visualization of scientific research results. Multiphase systems, 16(2), pp. 58-71. (In Russian). DOI: 10.21662/mfs2021.2.009
11. Sinyugin, A. A., Konygin, S. B., & Oparin, V. B. (2021). Algorithm for Strength Calculation of Reinforced Metal-Polymer Pipes Using an Equivalent Two-Layer Model. Territoriya “Neftegaz”, (1-2), pp. 84-90. (In Russian).
12. Dzhagarov, Yu. A. (2005). Programmnyj modul' dlya rascheta ap-proksimiruyushchih polinomov po metodu naimen'shih kvadratov. Programmnye produkty i sistemy, (3), p. 46-48. (In Russian).
13. Selyutin, A. D. (2018). Approksimaciya polinomov n stepeni metodom naimen'shih kvadratov. Molodoj uchenyj, 16(202), pp. 91-96. (In Russian).
14. Lavrov, I. G. (2007). Utochnenie matematicheskoj modeli napryazhen-nogo sostoyaniya polietilenovyh trub dlya rascheta pri razlichnyh temperaturah. Funda-mental'nye issledovaniya. – 2007, (1), pp. 44-45. (In Russian).
15. Serebrennikov, A. A., Serebrennikov, D. A. & Lavrov, I. G. (2023). Prokladka polietilenovyh truboprovodov s uchetom temperaturnyh vozdejstvij. Tyumen : Tyumenskij industrial'nyj universitet, p. 174. (In Russian).
16. Jakubovskaja, S. V., & Serebrennikov, D. A. (2003). Matematicheskaja model' naprjazhenno-deformirovannogo sostojanija gibkih polijetilenovyh trub. Oil and Gas Studies, 6(42), pp. 37-42. (In Russian).
Review
For citations:
Tolmachev A.A. Development of an algorithm for determining the stress-strain state of curved sections of oil and gas pipelines made of multilayer reinforced polypropylene pipes. Oil and Gas Studies. 2025;(4):126-136. (In Russ.) https://doi.org/10.31660/0445-0108-2025-4-126-136. EDN: QOZAMO