Preview

Oil and Gas Studies

Advanced search

Application of machine learning methods in oil and gas geology and geophysics: from theoretical foundations to practical implementation

https://doi.org/10.31660/0445-0108-2025-6-57-65

EDN: ZKDDBT

Abstract

This paper presents a systematic analysis of modern machine learning methods and their practical applications in solving key problems in petroleum geology and geophysics. This study discusses the advantages and limitations of major neural network architectures, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and deep feedforward networks (RNNs), and deep feedforward networks (DNNs). The authors of this paper paid special attention to the integration of various types and scales of data, ranging from seismic surveys to core samples and borehole geophysical measurements. The open-source machine learning platform, Orange, is highlighted as a very effective tool for geological data analysis and visualization tasks. Real-world examples illustrate how machine learning can significantly enhance interpretation accuracy, reduce time costs, and minimize subjective bias. The paper concludes that neural network technologies are transitioning from experimental tools to binding instruments for improving the economic efficiency of geological exploration activities.

About the Authors

N. R. Medvedev
Industrial University of Tyumen
Россия

Nikolay R., Medvedev, Graduate Student at the Department of Geology of Oil and Gas Fields

Tyumen



S. R. Bembel
Industrial University of Tyumen
Россия

Sergey R. Bembel, Doctor of Geological-Mineralogical Sciences, Professor at the Department of Geology of Oil and Gas Fields

Tyumen



M. E. Savina
Industrial University of Tyumen
Россия

Marina E. Savina, Senior Lecturer at the Department of Geology of Oil and Gas Fields

Tyumen



References

1. Vasilyonok, E. A. (2020). Klassifikaciya mineral'nyh komponentov granitoidov metodami cifrovoj petrografii i mashinnogo obucheniya. Zhurnal Belorusskogo gosudarstvennogo universiteta. Geografiya. Geologiya, (1), рр. 75-85. (In Russian).

2. Korolyov, V. A. (2021). Cifrovizaciya i iskusstvennyj intellekt v inzhenernoj geologii. Novye idei i teoreticheskie aspekty inzhenernoj geologii: trudy Mezhdunarodnoj nauchnoj konferencii. Moscow, Sam Poligrafist Publ., pp. 207-214. (In Russian).

3. Potekhin, D. V. & Galkin, S. V. (2023). Primenenie tekhnologii mashinnogo obucheniya pri modelirovanii raspredeleniya litotipov na permokarbonovoj zalezhi nefti Usinskogo mestorozhdeniya. Journal of Mining Institute, (259), pp. 41-51. (In Russian). DOI: 10.31897/РМI.2022.101.

4. Startsev, V. A. Buslaev, G. V. & Konoplyannikov, A. V. (2023). Analysis of the experience of machine learning methods application when drilling oil and gas wells. Construction of oil and gas wells on land and sea, 9(369), pp.15-24. (In Russian). DOI: 10.33285/0130-3872-2023-9(369)-15-24.

5. Alkroosh, I. S., Bahadori, M., Nikraz, H., & Bahadori, A. (2015). Regressive approach for predicting bearing capacity of bored piles from cone penetration test data. Journal of Rock Mechanics and Geotechnical Engineering, 7(5), pp. 584-592. (In English). DOI:10.1016/j.jrmge.2015.06.011.

6. Anemangely, M., Ramezanzadeh, A., Amiri, H., & Hoseinpour S.-A. (2019). Machine learning technique for the prediction of shear wave velocity using petrophysical logs. Journal of Petroleum Science and Engineering, (174), pp. 306-327. (In English). DOI: 10.1016/j.petrol.2018.11.032.

7. Demšar, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., & Zupan, B. (2013). Orange: data mining toolbox in Python. Journal of machine Learning research, 14(1), pp. 2349-2353. (In English).

8. Pochet, A., Diniz, P. H., Lopes, H., & Gattass, M. (2018). Seismic fault detection using convolutional neural networks trained on synthetic poststacked amplitude maps. IEEE Geoscience and Remote Sensing Letters, 16(3), pp. 352-356. (In English).

9. Zhang, P. Y., Sun, J. M., Jiang, Y. J., & Gao, J. S. (2017). Deep learning method for lithology identification from borehole images. In 79th EAGE Conference and Exhibition 2017. European Association of Geoscientists & Engineers. (1), pp. 1-5. (In English). DOI: 10.3997/2214-4609.201700945.


Review

For citations:


Medvedev N.R., Bembel S.R., Savina M.E. Application of machine learning methods in oil and gas geology and geophysics: from theoretical foundations to practical implementation. Oil and Gas Studies. 2025;(6):57-65. (In Russ.) https://doi.org/10.31660/0445-0108-2025-6-57-65. EDN: ZKDDBT

Views: 39

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0445-0108 (Print)