Preview

Известия высших учебных заведений. Нефть и газ

Расширенный поиск

ОПРЕДЕЛЕНИЕ РАСПРЕДЕЛЕНИЯ ДЕБИТА ВЕРТИКАЛЬНОЙ СКВАЖИНЫ С ТРЕЩИНОЙ ГРП КОНЕЧНОЙ ПРОВОДИМОСТИ

https://doi.org/10.31660/0445-0108-2018-3-69-74

Полный текст:

Об авторах

С. А. Фаик
Тюменский индустриальный университет; Университет технологии
Россия


М. Д. Альшейхли
Тюменский индустриальный университет, Киркукский университет
Россия


Список литературы

1. Gringarten A. C., Ramey H. J. Jr., Raghavan R. Unsteady State Pressure Distributions Created by a Well with a Sin- gle Infinite-Conductivity Vertical Fracture // SPE. - (August, 1974). - Vol. 14, Isssue 4. - P. 347-360.

2. Карнаухов М. Л., Пьянкова Е. М., Тулубаев А. Б. Гидропрослушивание скважин // Проблемы развития топливно-энергетического комплекса Западной Сибири на современном этапе: материалы Всеросc. науч.-техн. конф. - Тюмень: Вектор Бук, 2001. - С. 16-17.

3. Azari M., Knight L. E., Soliman M. Y. Low-Conductivity and Short Fracture Half-Length Type Curves and Analysis for Hydraulically Fractured Wells Exhibiting Near Radial Flow Profile // SPE 23630. - (March, 1992).

4. Barker B. J., Ramey H. J. Jr. Transient Flow to Finite Conductivity Vertical Fractures // SPE 7489. - (October 1978).

5. Beer G., Smith I., Duenser C. Boundary element method with programming // New York: Springer Wien, 2008.

6. Bennett C. O., Rosato N. D., Reynolds A. C. Jr., Raghavan R. Influence of Fracture Heterogeneity and Wing Length on the Response of Vertically Fractured Wells // SPE. - (May, 1981). - P. 27-29.

7. Cinco-Ley H. Evaluation of Hydraulic fracturing by Transient Pressure Analysis Methods // SPE 10043. - (March, 19-22). - Beijing.

8. Cinco-Ley H., Samaniego V. Transient Pressure Analysis: Finite Conductivity Fracture Case versus Damaged Fracture Case // SPE 10179. - (October, 1981).

9. Cinco-Ley H., Samaniego V., Dominguez A. N. Cinco-Ley H. Transient Pressure Behavior for a Well with a Finite- Conductivity Vertical Fracture // SPEJ. - (August, 1978).

10. Cinco-Ley H., Samaniego V., Rodriguez F. Behavior of Wells with Low-Conductivity Vertical Fractures // SPE 16776. - (September, 1987).

11. Cinco-Ley H., Meng H. Z. Pressure Transient Behavior for a Well with a Finite-Conductivity Vertical Fracture in double porosity reservoirs // SPE 18172. - (October, 1981).

12. Earlougher R. C. Jr. Advances in Well Test Analysis // SPE Monograph Series. - Vol. 5. - 1977.

13. Earlougher R. C. Jr., Ramey H. J. Jr. Interference Analysis in Bounded Systems // JCPT. - (October-December, 1973). - P. 33-45.

14. Graver D. P. Jr. Observing stochastic processes, and approximate transform inversion // Operations Research. - 1966. - 14(3). - P. 444-459.

15. Gringarten A. C., Ramey H. J. Jr. The Use of Source and Green's Functions in Solving Unsteady-Flow Problems in Reservoirs // SPE Journal Paper 3818-PA. - 1973.

16. Gringarten A. C., Ramey H. J. Jr. Unsteady-State Pressure Distributions Created by a Well with a Single Horizontal Fracture, Partial Penetration, or Restricted Entry // SPE - (August, 1974). - Vol. 14, Isssue 4. - P. 413-426.

17. Gupta O. P. Finite and boundary element methods in engineering. - India, 2002.

18. Katz D. L. Applied Numerical methods. - New York: Wiley, 1969.

19. Kikani J. Application of boundary element method to streamline generation and pressure transient testing. PhD dis- sertation. - Stanford University. - July, 1989.

20. Kikani J. Flux determination of finite conductivity fractures using higher order interpolation functions // SPE-22658- PA. - (March, 1995).

21. Lee S. T., Brockenbrough J. R. A New Analytical Solution for Finite Conductivity Vertical Fractures with Real Time and Laplace Space Parameter Estimation // SPE 12013. - 1983.

22. Meehan D. N. Hydraulically fractured wells in heterogeneous reservoirs interactions interference and optimization. PhD dissertation. - Stanford University. - July, 1989.

23. Petcher R. Boundary element simulation of petroleum reservoirs with hydraulically fractured wells. PhD dissertation. - Calgary Alberta, June, 1999.

24. Raghavan R. Pressure Behavior of Wells Intercepting Fractures // Proceedings, Invitational Well-Testing Sympo- sium. - 1977 (October 19-21). - Р. 117-160.

25. Raghavan R., Hadinoto N. Analysis of Pressure Data for Fractured Wells: The Constant-Pressure Outer Boundary // SPEJ April. - 1978. - Р. 139-149.

26. Ramey H. J. Short-Time-Well Test Data Interpretation in, the Presence of Skin-Effect and Wellbore Storage // Journal of Petroleum Technology. - 1970 (January). - P. 97-104.

27. Ramey H. J. Jr., Agarwall R. G. Annulus Unloading Rates as Influenced Wellbore Storage and Skin-Effect // SPEJ. - (October, 1972).

28. Russel D. G., Truitt N. E. Transient Pressure Behavior in Vertically Fractured Reservoirs // JPT. - (October, 1964). - Р. 1159-1170.

29. Sato K. Accelerated boundary element model for flow problems in heterogeneous reservoirs. PhD dissertation. - Stanford University. - June, 1992.

30. Scott J. O. The Effect of Vertical Fractures on Transient Pressure Behavior of Wells // JPT. - (December, 1963). - P. 1365-1369.

31. Stehfest H. Algorithm 368: Numerical inversion of Laplace transforms // Communications of the ACM. - 1970. - 13(1). - P. 47-49.

32. Stehfest H. Remark on algorithm 368: Numerical inversion of Laplace transforms Communications of the ACM. - 1970. - 13(10):624.

33. Van-Everdingen A. F., Hurst W. The Application of the Laplace Transformation to Flow Problems in the Reservoirs // Trans. AIME. - 1949. - Vol. 186. - P. 305-324.

34. Van-Everdingen A. F. The Skin Effect and its Influence on the Productive Capacity of the Wells // Trans. AIME. - 1953. - Vol. 198. - P. 171-176.

35. Van Kruysdijk C. P. J. W. Semianalytical Modeling of Pressure Transients in Fractured Reservoirs // SPE 18169. - (October, 1988).


Для цитирования:


Фаик С.А., Альшейхли М.Д. ОПРЕДЕЛЕНИЕ РАСПРЕДЕЛЕНИЯ ДЕБИТА ВЕРТИКАЛЬНОЙ СКВАЖИНЫ С ТРЕЩИНОЙ ГРП КОНЕЧНОЙ ПРОВОДИМОСТИ. Известия высших учебных заведений. Нефть и газ. 2018;(3):69-74. https://doi.org/10.31660/0445-0108-2018-3-69-74

For citation:


Faiq S.A., Alsheikhly M.J. PREDICTION OF THE TRANSIENT BEHAVIOR OF HYDRAULIC FRACTURED VERTICAL WELL WITH FINITE CONDUCTIVITY. Oil and Gas Studies. 2018;(3):69-74. (In Russ.) https://doi.org/10.31660/0445-0108-2018-3-69-74

Просмотров: 73


ISSN 0445-0108 (Print)