Preview

Oil and Gas Studies

Advanced search

Geochemistry of water-dissolved gases of oil-and-gas bearing deposits in the southern areas of Ob-Irtysh interfluve

https://doi.org/10.31660/0445-0108-2019-4-70-81

Abstract

The article presents the results of the studies of the geochemical features of water-dissolved gases in the oil and gas bearing deposits in the southern areas of Ob-Irtysh interfluve. An increase in the total groundwater gas saturation with an increase in depth was established, from 0,1–0,5 l/l in the Aptian-Albian-Cenomanian water-bearing complex to 3,0–3,5 l/l in the Lower and Middle Jurassic one. Methane is the most widespread gas in the waters, its concentration in water increases with depth down to 2 000–2 200 m, and deeper its concentration decreases within the depth range 2 400–2 500 m. Here a peak of the concentrations of its homologues was revealed (C2H6; C3H8; iC4H10; nC4H10; iC5H12; nC5H12; iC6H14; nC6H14). This kind of the vertical zoning is connected with the distribution of the deposits of hydrocarbons. Within the depth range of 2 600–2 700 m, a peak of carbon dioxide concentrations was detected. In some areas, gases with anomalous CO2 concentrations (up to 96 %) are widespread. The concentrations of nitrogen and helium regularly decrease with depth.

About the Authors

D. A. Novikov
Trofimuk Institute of Petroleum Geology and Geophysics of Siberian Branch of Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Dmitry A. Novikov, Candidate of Geology and Mineralogy, Head of the Laboratory of Sedimentary Basins Hydrogeology of Siberia, Trofimuk Institute of Petroleum Geology and Geophysics of Siberian Branch of Russian Academy of Sciences, Associate Professor at the Department of Geology of Petroleum Fields and at the Department of General and Regional Geology, Novosibirsk State University

Novosibirsk



A. E. Shokhin
Novosibirsk State University
Russian Federation

Andrey E. Shokhin, Student

Novosibirsk



A. A. Chernykov
Novosibirsk State University
Russian Federation

Alexander A. Chernykov, Student

Novosibirsk



F. F. Dultsev
Trofimuk Institute of Petroleum Geology and Geophysics of Siberian Branch of Russian Academy of Sciences
Russian Federation

Fedor F. Dultsev, Junior Researcher at the Laboratory of Sedimentary Basins Hydrogeology of Siberia

Novosibirsk



A. V. Chernykh
Trofimuk Institute of Petroleum Geology and Geophysics of Siberian Branch of Russian Academy of Sciences
Russian Federation

Anatoliy V. Chernykh, Junior Researcher at the Laboratory of Sedimentary Basins Hydrogeology of Siberia

Novosibirsk



References

1. Antonov, P. L. (1963). Dal'nost' i prodolzhitel'nost' diffuzii gazov iz zalezhey v zakonturnye vody. GAS Industry of Russia, (9), рр. 1-6. (In Russian).

2. Namiot, A. Yu. (1958). Fazovyye ravnovesiya v sistemakh plastovaya voda – prirodnyy gaz. GAS Industry of Russia, (12), рр. 1-10. (In Russian).

3. Connolly, C. A., Lynn, M. W., Baadsgaard, H., & Longstaffe, F. J. (1990). Origin and evolution of formation waters, Alberta Basin, Western Canada sedimentary Basin. I. Chemistry. Applied Geochemistry, 5(4), pp. 375-395. (In English). DOI: 10.1016/0883-2927(90)90016-X

4. Hitchon, B., Underschultz, J. R., Bachu, S., & Sauveplane, C. M. (1990). Hydrogeology, Geopressures and Hydrocarbon Occurrences, Beaufort-Mackenzie Basin. Bulletin of Canadian Petroleum Geology, 38(2) (June), pp. 215-235. (In English).

5. Kartsev, A. A. (Ed.) (1992). Teoreticheskie osnovy neftegazovoy gidrogeologii. Moscow, Nedra Publ., 208 p. (In Russian).

6. Bukaty, M. B. (1992). Metodika modelirovaniya vodno-gazovykh ravnovesiy v svyazi prognozom neftegazonosnosti. Oil and gas geology, (1), рр. 7-9. (In Russian).

7. Marshaev, O. A. (1992). Ispol'zovanie geokhimicheskikh i gidrogeologicheskikh kriteriev dlya prognoza produktivnosti yurskogo kompleksa otlozheniy Nadym-Purskoy neftegazonosnoy oblasti Zapadnoy Sibiri. Geology, Geophysics and Development of Oil and Gas Fields, (6), рр. 18-21. (In Russian).

8. Novikov, D. A. (2000). Stepen' gazonasyshcheniya podzemnykh vod produktivnoy chasti yurskogo gidrogeologicheskogo kompleksa Kharampurskogo megavala. Oil and gas geology, (3), рр. 51-56. (In Russian).

9. Iampen, H. T., & Rostron, B. J. (2000). Hydrogeochemistry of pre-Mississippian brines, Williston Basin, Canada–USA. Journal of Geochemical Exploration, 69-70, рр. 29-35. (In English). DOI: 10.1016/S0375-6742(00)00007-8

10. Grasby, S. E., Chen, Zh., & Dewing, K. (2012). Formation water geochemistry of the Sverdrup Basin: Implications for hydrocarbon development in the High Arctic. Applied Geochemistry, 27(8), pp. 1623-1632. (In English). DOI: 10.1016/j.apgeochem.2012.04.001

11. Panno, S. V., Hackley, K. C., Locke, R. A., Krapac, I. G., Wimmer B., Iranmanesh A., & Kelly, W. R. (2013). Formation waters from Cambrian-age strata, Illinois Basin, USA: Constraints on their origin and evolution. Geochimica et cosmochimica acta, 122, pp. 184-197. (In English). DOI: 10.1016/j.gca.2013.08.021

12. Novikov, D. A. (2013). Possibilities of oil-and-gas content in Middle-Jurassic deposits of Yamal peninsula by hydrogeological data. Oil and gas geology, (6). pp. 65-74. (In Russian).

13. Wu, M., Cao, J., Wang, X., Tang, Y., Xiang, B., & Wang, B. (2014). Organic geochemical identification of reservoir oil-gas-water layers in the Junggar Basin, NW China. Marine and Petroleum Geology, (57). pp. 594-602. (In English). DOI: 10.1016/j.marpetgeo.2014.07.006

14. Novikov, D. A., & Sukhorukova, A. F. (2015). Hydrogeology of petroleum deposits in the northwestern margin of the West Siberian Artesian Basin. Arabian Journal of Geosciences, 8(10), рр. 8703-8719. (In English).

15. Novikov, D. A. (2015). Primenenie metodiki poiskov zalezhey uglevodorodov na osnove izucheniya vodno-gazovykh ravnovesiy. GAS Industry of Russia, (3), рр. 12-17. (In Russian).

16. Guo, Х., Liu, K., Jia, Ch., Song, Y., Zhao, M., Zhuo, Q., & Lu, X. (2016). Fluid evolution in the Dabei Gas Field of the Kuqa Depression, Tarim Basin, NW China: Implications for fault-related fluid flow. Marine and Petroleum Geology, (78). pp. 1-16. (In English). DOI: 10.1016/j.marpetgeo.2016.08.024

17. Novikov, D. A. (2017). Hydrogeological conditions for the presence of oil and gas in the western segment of the Yenisei-Khatanga regional trough. Geodynamics & Tectonophysics, 8(4), рр. 881-901. (In Russian). DOI: 10.5800/GT-2017-8-4-0322

18. Novikov, D. A. (2017). Hydrogeochemistry of the Arctic areas of Siberian petroleum basins. Petroleum Exploration and Development, 44(5). рр. 780-788. (In English). DOI: 10.1016/S1876-3804(17)30088-5

19. Al-Hajeri, M. M., & Bowden, S. A. (2017). Application of formation water geochemistry to assess seal integrity of the Gotnia Formation, Kuwait. Arab J Geosci, 10(56). (In English). Available at: https://link.springer.com/content/pdf/10.1007%2Fs12517-017-2842-2.pdf. DOI: 10.1007/s12517-017-2842-2

20. Panno, S. V., Askari, Z., Kelly, W. R., Parris, T. M., & Hackley, K. C. (2018). Recharge and Groundwater Flow within an Intracratonic Basin, Midwestern United States. Groundwater. 56(1). pp. 32-45. (In English). DOI: 10.1111/gwat.12545

21. Qin, S., Li, F., Zhou, Zh., & Zhou, G. (2018). Geochemical characteristics of waterdissolved gases and implications on gas origin of Sinian to Cambrian reservoirs of Anyue gas field in Sichuan Basin, China. Marine and Petroleum Geology, 89, рp. 83-90. (In English). DOI: 10.1016/j.marpetgeo.2017.05.013

22. Novikov, D. A. (2018). Oil and gas fields exploration in the Jurassic-Cretaceous deposits of Yamal Peninsula based on the water gas equilibrium. Oil Industry, 4, рр. 16-21. (In Russian). DOI: 10.24887/0028-2448-2018-4-16-21

23. Gidrogeologiya SSSR. T. XVI: Zapadno-Sibirskaya ravnina (Tyumenskaya, Omskaya, Novosibirskaya i Tomskaya oblasti). Moscow, Nedra Publ., 368 p. (In Russian).

24. Kruglikov, N. M., Nelyubin, V. V., & Yakovlev, O. N. (1985). Gidrogeologiya ZapadnoSibirskogo neftegazonosnogo basseyna i osobennosti formirovaniya zalezhey uglevodorodov. Leningrad, Nedra Publ., 279 р. (In Russian).

25. Kartsev, A. A., Vagin, S. B., & Matusevich, V. M. (1986). Gidrogeologiya neftegazonosnykh basseynov. Moscow, Nedra Publ., 224 p. (In Russian).

26. Shvartsev, S. L., & Novikov, D. A. (2004). Priroda vertikal'noy gidrogeokhimicheskoy zonal'-nosti neftegazonosnykh otlozheniy (na primere Nadym-Tazovskogo mezhdurech'ya, Zapadnaya Sibir'). Russian Geology and Geophysics, 45(8), рр.1008-1020. (In Russian).

27. Nazarov, A. D. (2004). Neftegazovaya gidrogeokhimiya yugo-vostochnoy chasti Zapadno-Sibirskoy neftegazonosnoy provintsii. Moscow, Ideya-Press Publ., 288 р. (In Russian).

28. Matusevich, V. M., Ryl'kov, A. V., & Ushatinskiy, I. N. (2005). Geoflyuidal'nye sistemy i problemy neftegazonosnosti Zapadno-Sibirskogo megabasseyna.Tyumen, 225 р. (In Russian).

29. Zorkin, L. M. (2008). Genesis of gases of the underground hydrosphere in connection with prospecting of hydrocarbon accumulations. Geoinformatika, (1), рр. 45-53. (In Russian).

30. Novikov, D. A., Ryzhkova, S. V., Dultsev, F. F., Chernykh, A. V., Ses, K. V., Еfimtsev N. A., & Shokhin, A. Е. (2018). Oil and gas hydrogeochemistry of the pre Jurassic deposits in the southern areas of Ob-lrtysh interfluves. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 329(12), рр. 39-54. (In Russian). DOI: 10.18799/24131830/2018/12/19

31. Sadykova, Ya. V., Fomin, M. A., Glazunova, A. S., Dultsev, F. F., Ses, K. V., & Chernykh, A. V. (2019). To the nature of the hydrochemical anomalies in mezhovksky oiland gasbearing region (Tomsk and Novosibirsk regions). Geology, geophysics and development of oil and gas fi elds, (1), pp. 45-54. (In Russian). DOI: 10.30713/2413-5011-2019-1-45-54

32. Pankina, R. G., Mekhtieva, V. L., Gurieva, S. M., & Shkutnik Е. N. (1978). Genezis SO2 v neftyanykh poputnykh gazakh (po izotopnomu sostavu ugleroda). Oil and gas geology, (2), рр. 38-44. (In Russian).

33. Maksimov, S. P., Pankina, R. G., Gurieva, S. M., & Zapivalov, N. P. (1980). Izotopnyy sostav ugleroda SO2 gazov Zapadnoy Sibiri v svyazi s ego genezisom. Geokhimiya, (7), рр. 992-998. (In Russian).

34. Rozin, A. A., & Serdyuk, Z. Ya. (1970). Preobrazovaniye sostava podzemnykh vod i porod Zapadno-Sibirskoy plity pod vozdeystviyem glubinnogo uglekislogo gaza. Litologiya i poleznyye iskopayemyye, 4, рр. 102-113. (In Russian).

35. Cathles, L. M., & Schoell, M. (2007). Modeling CO2 generation, migration, and titration in sedimentary basins. Geofluids, (7). pp. 441-450. (In English). DOI: 10.1111/j.1468-8123.2007.00198.x

36. Van Berk, W., Schulz H.-M., Fu Y. (2009). Hydrogeochemical modeling of CO2 equilibria and mass transfer induced by organic–inorganic interactions in siliciclastic petroleum reservoirs. Geofluids, 9, рр. 253-262. (In English). DOI:10.1111/j.1468-8123.2009.00256.x


Review

For citations:


Novikov D.A., Shokhin A.E., Chernykov A.A., Dultsev F.F., Chernykh A.V. Geochemistry of water-dissolved gases of oil-and-gas bearing deposits in the southern areas of Ob-Irtysh interfluve. Oil and Gas Studies. 2019;(4):70-81. (In Russ.) https://doi.org/10.31660/0445-0108-2019-4-70-81

Views: 501


ISSN 0445-0108 (Print)