Preview

Oil and Gas Studies

Advanced search

Experimental study of the efficiency of using polymer compositions for enhanced oil recovery

https://doi.org/10.31660/0445-0108-2019-4-113-121

Abstract

Experimental research work were carried out on a pilot plant simulating a fractured porous reservoir to study the efficiency of using various compositions, which are pumped into productive layers during the work on enhancing oil recovery: polymer clay-quartz composition (PCQC), modified polymer-clay com-position (MPCC), a modified cross-linked polymer system (MCPS) and the classic modified polymer-dispersed composition (MPDC). There are marked criteria of the effectiveness on selective insulation work, namely: a reliable filling of the high conductivity channel (cracks) with the composition; no leakage of the composition from the crack; breakthrough of water through the crack filled with the composition; no penetration of the composition into the pore volume of the pilot plant. Taking into account these criteria, it was shown that the polymer clay-quartz com-position turned out to be the most effective composition for reliable clogging of high conductivity channels; the MCPS composition didn't show its effectiveness.

About the Authors

N. G. Musakaev
Tyumen Branch of Khristianovich Institute of Theoretical and Applied Mechanics SB RAS; Industrial University of Tyumen
Russian Federation

Nail G. Musakaev, Doctor of Physics and Mathematics, Associate Professor, Chief Researcher, Tyumen Branch of Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Professor at the Department of Development and Exploitation of Oil and Gas Fields, Industrial University of Tyumen

Tyumen



D. M. Sahipov
Nizhnevartovsk branch of Industrial University of Tyumen; Jahmir RPC
Russian Federation

Damir M. Sahipov, General Director of Jahmir RPC, Senior Lecturer at the Department of Petroleum Engineering, Nizhnevartovsk branch of Industrial University of Tyumen

Nizhnevartovsk



I. A. Kruglov
Jahmir RPC
Russian Federation

Igor A. Kruglov, Deputy General Director for Science

Nizhnevartovsk



References

1. Nikonov, A. I. (2016). Problems of seismogeophysical methods during elaboration of geological models of oil and gas fields. Actual Problems of Oil and Gas, (3(15)), pp. 8-24. (In Russian). DOI: 10.29222/ipng.2078-5712.2016-15.art8

2. Pichugin, O. N., Solyanoy, P. N., Gavris, A. S., Kosyakov, V. P., & Kosheverov, G. G. (2015). Updating of fields development systems on the basis of complex analysis of the information about low-amplitude tectonic faults. Oilfield Engineering, (11), pp. 5-15. (In Russian).

3. Bondarenko, P. M., Zakharov, V. V., Zubkov, M. Yu., Pormeyster, Ya. A., Mordvintsev, M. V., & Sadykov, M. R. (2014). Prognoz zon prirodnoy treshchinovatosti v produktivnykh otlozheniyakh Zapadno-Ur'evskoy ploshchadi po dannym seysmorazvedki i tektonofizicheskogo modelirovaniya. Vestnik nedropol'zovatelya Khanty-Mansiyskogo avtonomnogo okruga, (14), pp. 25-35. (In Russian).

4. Markov, P. V., & Rodionov, S. P. (2015). The method of accelerations of serial numerical calculations for multiphase flow equations in porous media using continuous groups of symmetries. Automation, telemechanization and communication in the oil industry, (12), pp. 23-30. (In Russian).

5. Bondarenko, P. M., & Zubkov, M. Yu. (1999). Prognoz zon vtorichnoy treshchinovatosti na osnove dannykh seysmorazvedki i tektonofizicheskogo modelirovaniya. Oil and gas geology, (11-12), pp. 31-40. (In Russian).

6. Nelson, R. A. (2001). Geologic Analysis of Naturally Fractured Reservoirs. Houston, USA, Gulf Professional Publishing, 332 p. (In English).

7. Trofimov, A. S., Ibragimov, L. Kh., & Sitnikov, A. A. (1996). Ogranichenie vodopritokov neftyanykh skvazhin po kanalam nizkogo fil'tratsionnogo soprotivleniya. Oilfield Engineering, (6), pp. 13-18. (In Russian).

8. Suchkov, B. M. (2005). Dobycha nefti iz karbonatnykh kollektorov. Moscow-Izhevsk, Regulyarnaya i khaoticheskaya dinamika NITS, 688 p. (In Russian).

9. Trofimov, A. S., Berdnikov, S. V., Krivova, N. R., Alpatov, A. A., Davitashvil,i G. I., & Garipov, O. M. (2006). Obobshchenie indikatornykh (trassernykh) issledovaniy na mestorozhdeniyakh Zapadnoy Sibiri. Oil and Gas Territory, (12), pp. 72-77. (In Russian).

10. Batalov, D. A., Mukhametshin, V. V., Andreev, V. E., Dubinsky, G. S., & Fedorov, K. M. (2016). Comparative analysis of the predictive efficiency of sediment-gel-forming oil recovery improvement technologies in fields of LLC "LUKOIL WESTERN SIBERIA". Neftegazovoe delo, 14(3). pp. 40-46. (In Russian).

11. Daccord, G., Touboul, E., & Lenormand, R. (1989). Carbonate acidizing. Toward a quantitative model of the wormholing phenomena. SPE Production Engineering, 4(1). pp. 63-68. (In English). DOI: 10.2118/16887-PA

12. Fedorov, K. M., Pichugin, O. N., Latypov, A. R., & Gavrilova, N. M. (1998). Metod rascheta raz-merov i sostava otorochki termoreaktivnykh polimerov, zakachivaemoy v plast s tsel'yu izo-lyatsii vodopritoka. Oilfield Engineering, (8-10), pp. 82-84. (In Russian).

13. Smirnov, A. S., Fedorov, K. M., & Shevelev, A. P. (2010). Modeling the acidizing of a carbonate formation. Fluid Dynamics, 45(5). pp. 779-786. (In English). DOI: 10.1134/S0015462810050108

14. Han, G., Dusseault, M. B. (2003). Description of fluid flow around a wellbore with stress-dependent porosity and permeability. Journal of Petroleum Science and Engineering, 40(1-2), pp. 1-16. (In English). DOI: 10.1016/S0920-4105(03)00047-0

15. Sakhipov, D. M., Apasov, T. K., & Sakhipov, E. M. Sposob povysheniya nefteotdachi treshchinovatykh i poristykh plastov s iskusstvenno sozdannymi treshchinami posle gidravlicheskogo razryva plasta GRP. Pat. RF 2398102 S1. Applied: 08.10.09; Published: 27.08.10. (In Russian).


Review

For citations:


Musakaev N.G., Sahipov D.M., Kruglov I.A. Experimental study of the efficiency of using polymer compositions for enhanced oil recovery. Oil and Gas Studies. 2019;(4):113-121. (In Russ.) https://doi.org/10.31660/0445-0108-2019-4-113-121

Views: 624


ISSN 0445-0108 (Print)