Fundamentals of the method for organic solid waste processing by coking
https://doi.org/10.31660/0445-0108-2019-5-160-169
Abstract
A new low-temperature environmentally safe method of efficient processing of municipal solid waste of organic origin by coking has been developed, which can be used in the future for processing any types of organic waste. In addition, recommendations on the use of processed products were provided.
About the Authors
A. N. PaukovRussian Federation
Alexey N. Paukov, Associate Professor at the Department of Oil and Gas Processing
Tyumen
R. Z. Magaril
Russian Federation
Romen Z. Magaril, Doctor of Engineering, ProfessorConsultant at the Department of Oil and Gas Processing
Tyumen
E. R. Magaril
Russian Federation
Elena R. Magaril, Doctor of Engineering, Professor, Head of the Department of the Environmental Economics
Ekaterinburg
References
1. Lin, Y., Ma, X., Peng, X., Yu, Z., Fang, S., & Fan, Y. (2016). Combustion, pyrolysis andchar CO2-gasification characteristics of hydrothermal carbonization solid fuel from municipal solid wastes. Fuel, 181, pp. 905-915. (In English). DOI: 10.1016/j.fuel.2016.05.031
2. Motasemi, F., & Afzal, M. T. (2013). A review on the microwave-assisted pyrolysistechnique. Renewable and Sustainable Energy Reviews, 28, pp. 317-330. (In English). DOI: 10.1016/j.rser.2013.08.008
3. Arena, U. (2012). Process and technological aspects of municipal solid waste gasification. Waste Management, 32, pp. 625-639. (In English). DOI: 10.1016/j.wasman.2011.09.025
4. Nordin, A., Pommer, L., Nordwaeger, M., & Olofsson, I. (2013). Biomass conversionthrough torrefaction. Technologies for Converting Biomass to Useful Energy. New York, CRC Press, pp. 217-244. (In English).
5. Zhao, P., Shen, Y., Ge, S., Chen, Z., & Yoshikawa, K. (2014). Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment. Applied Energy, 131, pp. 345-367. (In English). DOI: 10.1016/j.apenergy.2014.06.038
6. Basu, P. (2013). Biomass Gasification, Pyrolysis and Torrefaction: Practical Design andTheory. 2nd edition. USA, Elsevier Inc., 548 p. (In English).
7. Magaril R. Z. (2010). Teoreticheskie osnovy khimicheskikh protsessov pererabotki nefti.Moscow, KDU Publ., 2010. 280 p. (In Russian).
8. Magaril, R. Z. (1976). Mekhanizm i kinetika gomogennykh termokhimicheskikh prevrashcheniy uglevodorodov. Moscow, Khimiya Publ., 1976. 224 p. (In Russian).
9. Trushkova, L. V., Drozdova, S. N. (1993). Metodicheskie ukazaniya po laboratornomu praktikumu "Koksovanie tyazhelykh neftyanykh ostatkov". Tyumen, TyumGNGU Publ., 5 p. (In Russian).
10. Smidovich, E. V., & Lukashevich, I. V. (Eds). (1978). Praktikum po tekhnologii pererabotki nefti. 3rd edition, revised and expanded. Moscow, Khimiya Publ., 228 p. (In Russian).
11. Akhmetov, S. A. (2002). Tekhnologiya glubokoy pererabotki nefti i gaza. Ufa, GilemPubl., 672 p. (In Russian).
12. Siddiqui, M. N., & Redhwi, H. H. (2009). Catalytic coprocessing of waste plastics and petroleum residue into liquid fuel oils. Journal of Analytical and Applied Pyrolysis, 86, pp. 141-147. (In English). DOI: 10.1016/j.jaap.2009.05.002
13. Kunwar, B., Cheng, H. N., Chandrashekaran, S. R., & Sharma, B. K. (2016). Plastics tofuel: a review. Renewable and Sustainable Energy Reviews, 54, pp. 421-428. (In English). DOI: 10.1016/j.rser.2015.10.015
14. Cai, J.-J, Yu, G.-W, Liao, H.-Q, Qian, K., Zhao, P. & He, Y.-B. (2006). Disposal ofwaste plastics with traditional coking process. Journal of Iron and Steel Research International, 13, pp. 5-9. (In English). DOI: 10.1016/S1006-706X(06)60016-2
Review
For citations:
Paukov A.N., Magaril R.Z., Magaril E.R. Fundamentals of the method for organic solid waste processing by coking. Oil and Gas Studies. 2019;(5):160-169. (In Russ.) https://doi.org/10.31660/0445-0108-2019-5-160-169