The map of permanent natural electric field of Russia
https://doi.org/10.31660/0445-0108-2019-6-42-50
Abstract
The article describes a direct connection between the natural electric potential and the dynamics of the temperature of volcanoes using the examples of observation of the natural electric potential on the surfaces of volcanoes. If the upper part of the volcano is hotter, positive potential anomalies are recorded, and conversely, if the lower part of the volcanoes is hotter, negative anomalies of the same potential are recorded. At the same time, the temperature processes occurring at great depths, as a rule, are closely related to long-lived deep faults. Therefore, observations of the natural potential over these faults will allow controlling the dynamics of deep temperature processes. Given this new direction of the natural potential method and its effective application in the search for non-ferrous metal ores, there is a need to create the map of the natural electrical potential of Russia. As a result, small-scale map would allow us more precise limitation of ore fields and purposefully search for previously undiscovered deposits of metal ores. In addition, a small-scale map would make it possible to most accurately track the development of deep tectonic fault zones and to study them in relation to volcanic activity and seismic events. In this regard, the method of natural electric potential hodograph is considered as one of the possible ways to predict seismic events.
About the Author
A. N. DmitrievRussian Federation
Arkadiy N. Dmitriev, Doctor of Geology and Mineralogy, Professor at the Department of Applied Geophysics, Director of the Scientific and Technical Center "Geophysical Exploration Technology"
Tyumen
References
1. Semenov, A. S. (1974). Elektrorazvedka metodom yestestvennogo elektricheskogo polya. 2nd edition, revised and expanded. Leningrad, Nedra Publ., 392 p. (In Russian).
2. Cveshnikov, G. B. (1967). Elektrokhimicheskiye protsessy na sul'fidnykh mestorozhdeniyakh. Leningrad, LGU Publ., 160 p. (In Russian).
3. Zhamaletdinov, A. A. (1996). Grafit v zemnoy kore i anomalii elektroprovodnosti. Fizika Zemli, (4), pp. 12-29. (In Russian).
4. Zhamaletdinov, A. A. (2006). Elektroprovodnost' zemnoy kory territorii Rossii i sopredel'nykh stran. Voprosy geofiziki, (39), pp. 69-90. (In Russian).
5. Vol'fson, F. I., Yakovlev, P. D. (1975). Struktury rudnykh poley i mestorozhdeniy. Moscow, Nedra Publ., 271 p. (In Russian).
6. Kopylov, M. I. (2010). Fiziko-geologicheskiye modeli formirovaniya rudonosnykh sistem yuga Dal'nego Vostoka Rossii. Diss. dokt. geol.-mineral. nauk. Irkutsk, 293 p. (In Russian).
7. Sazonov, V. N., Koroteev, V. A., Ogorodnikov, V. N., Polenov, Yu. A., & Velikanov, A. Ya. (2011). Gold in "black shales" of the Urals. Lithosphere, (4), pp. 70-92. (In Russian).
8. Kerimov, R. B. (2010). Tipomorfnye osobennosti zolotorudnoy mineralizatsii v chernoslantsevykh kompleksakh yuzhnogo sklona Bol'shogo Kavkaza i ee perspektivy (Azerbaydzhan). Samorodnoe zoloto: tipomorfizm mineral'nykh assotsiatsiy, usloviya obrazovaniya mestorozhdeniy, zadachi prikladnykh issledovaniy: materialy Vserossiyskoy konferentsii. Tom 1. Moscow, IGEM Publ., pp. 237-240. (In Russian).
9. Nishida Y., Matsushima N., Goto A. (1996). Self-Potential Studies in Volcanic Areas(3): Miyake-jima, Esan and Usu. Journal of the Faculty of Science. Series 7, Geophysics, 10, Issue 1, pp. 63-77. (In English).
10. Aizawa, K. (2004). A large self-potential anomaly and its changes on the quiet Mt. Fuji, Japan. Geophysical Research Letters, 31. (In English). Available at: https://doi.org/10.1029/2004GL019462.
11. Lementueva, R. A, Khromov, A. A., Irisova, E. L., & Borisova, L. E. (2009). Obshchie zakonomernosti estestvennykh elektricheskikh poley i ikh svyaz' s geotektonicheskimi strukturami (Kamchatka). Tektonofizika i aktual'nye voprosy o Zemle. K 40-letiyu sozdaniya M. V. Gzovskim laboratorii tektonofiziki v IFZ RAN: materialy dokladov Vserossiyskoy konferentsii. V dvukh tomakh. Tom 2. Moscow, IFZ Publ., 451 p. (In Russian).
12. Os'kin, I. M. (1968). Rezul'taty geofizicheskikh poiskov margantsevogo orudeneniya v Prisayan'e. Trudy Irkutskogo politekhnicheskogo instituta. Ser. geofiz., 51, pp. 74-80. (In Russian).
13. Dmitriev, A. N. (2002). Geologo-geofizicheskie osnovy poiskov elektricheski polyarizovannykh ob''ektov neftyanykh i rudnykh zalezhey (na primere Zapadnoy Sibiri): Diss. dоkt. geol.-mineral. nauk. Tyumen, 280 p. (In Russian).
14. Zorin Yu. A., & Turutanov E. Kh. (2004). Regional isostatic gravity anomalies and mantle plumes in southern East Siberia (Russia) and Central Mongolia. Russian Geology and Geophysics, 45(10), pp. 1248-1258. (In English).
15. Zharkov, V. N. (1978). Vnutrennee stroenie Zemli i planet. Moscow, Nauka Publ., 192 p. (In Russian).
16. Goldie, M. (2002). Self-potentials associated with the Yanacocha high-sulfidation gold deposit in Peru. Geophysics, 67(3), pp. 684-689. (In English). DOI: 10.1190/1.1484511
17. Stolov, B. L., Kashaev, B. I., & Bardina, E. S. (2013). Prospects and the main directions of development of the method of natural electric field in the Primorsky and Khabarovsk territories. Bulletin of the Engineering school of the far Eastern Federal University, (3(16)), pp. 21-29. (In Russian).
Review
For citations:
Dmitriev A.N. The map of permanent natural electric field of Russia. Oil and Gas Studies. 2019;(6):42-50. (In Russ.) https://doi.org/10.31660/0445-0108-2019-6-42-50