Analysis of the efficiency of models of transition zones to determine oil-saturation factors and position of contact of hydrocarbons with water
https://doi.org/10.31660/0445-0108-2019-6-67-76
Abstract
The article is devoted to the usage of models of transition zones in the interpretation of geological and geophysical information. These models are graphs of the dependences of oil-saturation factors of the collectors on their height above the level with zero capillary pressure, taking into account the geological and geophysical parameter. These models are not recommended for estimating oilsaturation factors of collectors in the transition zone. The height of occurrence of the collector above the level of zero capillary pressure can be estimated from model of the transition zone that take into account the values of the coefficients of residual water saturation factor of the collectors, but only when the model of the transition zone is confirmed by data capillarimetry studies on the core.
About the Author
G. E. StroyanetskayaRussian Federation
Galina E. Stroyanetskaya, Senior Lecturer at the Department of Applied Geophysics
Tyumen
References
1. Antipin, Ya. O., & Belkina, V. A. (2016). Modeling oil saturation of polymict reservoir deposit using the J-function Leverett. Oil and Gas Territory, (2), pp. 51-57. (In Russian).
2. Bol'shakov, Yu. Ya. (1995). Teoriya kapillyarnosti neftegazonakopleniya. Novosibirsk, Nauka Publ., 184 p. (In Russian).
3. Gudok, N. S., Bogdanovich, N. N., & Martynov, V. G. (2007). Opredeleniye fizicheskikh svoystv neftevodosoderzhashchikh porod. Moscow, Nedra-Biznestsentr LLC, 592 p. (In Russian).
4. Grischenko, M. A. (2008). Advanced approaches to oil saturation modeling of complicated pools with the aim to build hydrodynamic models. Oil and gas geology, (5), pp. 45-51. (In Russian).
5. Grishchenko, M. A., & Bikbulatova, T. G. (2008). Modern approaches to saturation modeling when building geologic and filtration models. Oil Industry, (12), 18-21. (In Russian).
6. Grishchenko, M. A. (2008). Geometrizatsiya neftyanykh zalezhey i matematicheskoye modelirovaniye neftevodonasyshchennosti na osnove stadiynosti protsessov neftegazoobrazovaniya (na primere mestorozhdeniy Zapadnoy Sibiri): Avtoref. diss. kand. tekhn. nauk. – Ekaterinburg, 23 p. (In Russian).
7. D'yakonova, T. F., Bilibin, S. I., Dubina, A. M., Isakova, T. G., & Yukanova, Ye. A. (2004). Problema obosnovaniya vodoneftyanogo kontakta po materialam geofizicheskikh issledovaniy skvazhin pri postroyenii detal'nykh geologicheskikh modeley. Karotazhnik, (3-4(116-117)), pp. 83-97. (In Russian).
8. Petersil'e, V. I., Belov, Yu. A., Veselov, M. F., & Gorbunova, S. P. (1982). K voprosu otsenki parametrov perekhodnoy zony s ispol'zovaniem krivykh kapillyarnogo davleniya, (242). Moscow, VNIGNI Publ., pp. 63-71. (In Russian).
9. Craig F. F., Jr. (1971). The reservoir engineering aspects of waterflooding. U.S.A., Amoco Production Company. (In English). Available at: https://store.spe.org/ReservoirEngineering-Aspects-Of-Waterflooding--P68.aspx
10. Metodicheskiye ukazaniya po geologo-promyslovomu analizu razrabotki neftyanykh i gazoneftyanykh mestorozhdeniy. (In Russian). Available at: http://docs.cntd.ru/document/1200039442
11. Mikhailov, A. N. (2012). The main ideas of transitional zones and water contacts in nonuniform stratums. Mineral resources. Geological power energy. Geopolitics, (1(5)), pp. 150-160. (In Russian).
12. Rekomendatsii k metodike postroyeniya geologicheskikh modeley pri podschete zapasov uglevodorodnogo syr'ya (2014). Moscow, GKZ Publ., 100 p. (In Russian). Available at: http://gkzrf.ru/uglevodorodnoe-syre.
13. Teige, G. M. G., Hermanrud, Ch., Thomas, W. H., Wilson, O. B., & Nordgård Bolås, H. M. (2005). Capillary resistance and trapping of hydrocarbons: a laboratory experiment. Petroleum Geoscience, 11(2), pp. 125-129. (In English). DOI: 10.1144/1354-079304-609
14. Petersil'e, V. I., Poroskun, V. I., Yatsenko, G. G. (Ed.) (2003). Metodicheskie rekomendatsii po podschetu geologicheskikh zapasov nefti i gaza ob''emnym metodom. Moscow Tver, VNIGNI, Tver'geofizika NPTS, 258 p. (In Russian).
15. Khabarov, A. V. (2010). Metodika interaktivnogo petrofizicheskogo modelirovaniya neftenasyshchennykh zalezhey nefti (po dannym kerna, GIS i istorii razrabotki mestorozhdeniy salymskoy gruppy): Avtoref. diss. kand. tekhn. nauk. Moscow, 30 p. (In Russian).
16. Khabarov, A. V., & Volokitin, Ya. E. (2009). Evaluation of terrigenous reservoir permeability from core, logs and production data. Karotazhnik, (12(189)), pp. 167-211. (In Russian).
17. Tauzhnyansky, G. V., Rumack, N. P., & Selivanova, E. E. (2005). Correlation methods of quantitative criterion evaluation of "reservoir non-reservoir" deposits of Western Siberia. Karotazhnik, (8(135)), pp. 5-11. (In Russian).
18. Doroginitskaya, L. M., Dergacheva, T. N., Anashkin, A. R., Kolyvanov, A. I., Kushnarev, S. V., Khudyakova, L. D., & Romanova, E. A. (2007). Kolichestvennaya otsenka dobyvnykh kharakteristik kollektorov nefti i gaza po petrofizicheskim dannym i materialam GIS. Tomsk, Scientific & Technical Translations Publ., 278 p. (In Russian).
19. Dakhnov, V. N. (1982). Interpretatsiya rezul'tatov geofizicheskikh issledovaniy razrezov skvazhin. 2nd edition, revised. Moscow, Nedra Publ., 448 p. (In Russian).
Review
For citations:
Stroyanetskaya G.E. Analysis of the efficiency of models of transition zones to determine oil-saturation factors and position of contact of hydrocarbons with water. Oil and Gas Studies. 2019;(6):67-76. (In Russ.) https://doi.org/10.31660/0445-0108-2019-6-67-76