Preview

Oil and Gas Studies

Advanced search

Simulation of the stress-strain state of the Ripper foot with a flexible stand

https://doi.org/10.31660/0445-0108-2019-6-125-131

Abstract

The article presents the results of the calculation of stresses and strains of the structure of the Ripper rack, made in the form of a flexible tubular element, under loading by internal pressure and external force. The finite element method implemented in the ANSYS program was used for the research. The problems of constructing a grid model of a tubular element were solved, displacements of the free end and stresses under the action of internal pressure were determined, the maximum allowable pressure value was found. The horizontal component of the force of influence of the soil on the cultivator, in which there is a loss of stability, is determined. The soil resistance forces were determined by numerical methods depending on the shape of the paw and the speed of movement.

About the Authors

S. P. Pirogov
Industrial University of Tyumen; Northern Trans-Ural State Agricultural University
Russian Federation

Sergey P. Pirogov, Doctor of Engineering, Professor at the Department of Applied Mechanics, Industrial University of Tyumen, Associate Professor at the Department of Forestry, Woodworking and Applied Mechanics, Northern Trans-Ural State Agricultural University

Tyumen



D. A. Cherentsov
Industrial University of Tyumen
Russian Federation

Dmitry А. Cherentsov, Candidate of Engineering, Associate Professor at the Department of Transportation of Hydrocarbon Resources

Tyumen 



References

1. Kokoshin, S. (2015). The physical basis of the soil destruction process. Bulletin of the Northern Trans-Ural State Agricultural University, (4(131)), pp. 100-104. (In Russian).

2. Pirogov, S. P., & Chuba, A. Yu. (2017). Primeneniye manometricheskikh trubchatykh pruzhin v sel'skokhozyaystvennykh mashinakh. Agro-food policy in Russia, (9(69)), pp. 82-88. (In Russian).

3. Kokoshin, S. (2012). Cultivator rack with the measured stiffness. Sel'skiy mekhanizator, (5), pp. 8. (In Russian).

4. Maratkanov, A. A., Smolin, N. I., Kokoshin, S. N., & Ustinov, N. N. Rabochiy organ kul'tivatora. Patent na poleznuyu model' RF, No 116000. Applied: 03.05.2011. Published: 20.05.2012. Bulletin No 14. 3 p. (In Russian).

5. Pirogov, S. P. (2009). Manometricheskiye trubchatyye pruzhiny. St. Petersburg, Nedra Publ., 276 p. (In Russian).

6. Pirogov, S. P., & Cherentsov, D. A. (2016). Theoretical Foundations of the Design of Vibration-Resistant Manometers. Measurement Techniques, 59(8), pp. 845-849. (In English).

7. Pirogov, S. P., Cherentsov, D. A., & Chub, A. Yu. Kolebaniya manometricheskikh trubchatykh pruzhin. Tyumen, TyumGNGU Publ., 95 p. (In Russian).

8. Cherentsov, D. A., Pirogov, S. P., Dorofeev, S. M., & Ryabova, Y. S. (2018). Oscillations of manometric tubular springs with rigid end. IOP Conference Series: Materials Science and Engineering, 357. (In English). Available at: https://doi.org/10.1088/1757-899x/357/1/012030

9. Pirogov, S. P., Cherentsov, D. A., & Gulyaev, B. A. (2016). Prospects of Applying Vibration-Resistant Pressure Gauges in the Oil and Gas Industry. IOP Conference Series: Materials Science and Engineering, 154. (In English). Available at: https://doi.org/10.1088/1757899x/154/1/012013

10. Pirogov, S. P., Cherentsov, D. A., & Chuba, A. Yu. (2016). Study of Elastic Sensing Elements for Vibration-Resistant Pressure Gauges. IOP Conference Series: Materials Science and Engineering, 154. (In English). Available at: https://doi.org/10.1088/1757-899x/154/1/012015.

11. Pirogov, S. P., Chuba, A. Yu., & Cherentsov, D. A. (2018). Effect of section shape on frequencies of natural oscillations of tubular springs. IOP Conference Series: Materials Science and Engineering, 357. (In English). Available at: https://doi.org/10.1088/1757-899x/357/1/012032

12. Pirogov, S. P., & Chuba, A. Yu. (2019). Аutomation of calculations of technical characteristics of manometric tubular springs. Journal of Mechanical Engineering Research & Developments, 42(2), pp. 27-29. (In English). DOI: 10.26480/jmerd.02.2019.27.29

13. Bordovskiy, G. A. (2005). Fizicheskiye osnovy matematicheskogo modelirovaniya. Moscow, Academia Publ., 315 p. (In Russian).

14. Kuznetsov, Yu. I. (2008). Modelirovaniye kolebatel'nykh sistem v prirodnykh sredakh. Novosibirsk, the Russian Academy of Sciences Publ., 231 p. (In Russian).

15. Revinskaya, O. G. (2016). Osnovy programmirovaniya v MatLab. St. Petersburg, BKHV-Peterburg Publ., 208 p. (In Russian).

16. Basov, K. A. (2014). ANSYS. Spravochnik pol'zovatelya. Moscow, DMK Press Publ., 640 p. (In Russian).

17. Denisov, M. A. (2014). Komp'yuternoye proyektirovaniye. ANSYS. Ekaterinburg, UrFU Publ., 76 p. (In Russian).

18. Morozov, Ye. M., Muyzemnek A. Yu., & Shadskiy, A. S. (2018). ANSYS v rukakh inzhenera. Mekhanika razrusheniya. St. Petersburg, Lenand Publ., 456 p. (In Russian).

19. Shadskiy, A. S., Morozov, Ye. M., Zhekov, K. N., & Plotnikov, A. S. (2018). ANSYS v rukakh inzhenera. Temperaturnyye napryazheniya. St. Petersburg, Editorial URSS, 480 p. (In Russian).


Review

For citations:


Pirogov S.P., Cherentsov D.A. Simulation of the stress-strain state of the Ripper foot with a flexible stand. Oil and Gas Studies. 2019;(6):125-131. (In Russ.) https://doi.org/10.31660/0445-0108-2019-6-125-131

Views: 350


ISSN 0445-0108 (Print)