Preview

Oil and Gas Studies

Advanced search

Research and development of optimal technological solutions for the processing of the Pyakyakhinskoye gas condensate field in the Bolshekhetskaya depression

https://doi.org/10.31660/0445-0108-2019-6-149-158

Abstract

The article deals with the results of a complex physical and chemical study of gas condensates. The research was carried out on gas condensates of the Pyakyakhinskoye gas condensate of productive formation BU18 in perforation intervals 3 153–3 277 m, 3 208–3 239 m, 3 455–4 060 m, 3 685–4 293 m, 3 781–4 429 m. Attention to this topic is due to the fact that this information is necessary for the calculation of reserves of natural resources, design, development of the field, and optimal technological solutions for its processing.

About the Authors

O. P. Deryugina
Industrial University of Tyumen
Russian Federation

Olga P. Deryugina, Candidate of Engineering, Associate Professor at the Department of Oil and Gas Processing

Tyumen



E. N. Skvortsova
Industrial University of Tyumen
Russian Federation

Elena N. Skvortsova, Candidate of Engineering, Associate Professor at the Department of Oil and Gas Processing

Tyumen



Yu. P. Gurov
Industrial University of Tyumen
Russian Federation

Yuri P. Gurov, Candidate of Engineering, Associate Professor at the Department of  Oil and Gas Processing

Tyumen



References

1. Kovda, D. A., & Mastobaev, B. N. (2013). Changes in the physical and chemical properties in the extraction of oil (for example RF fields) and their influence on the process of preparation and transportation. Transport and Storage of Oil Products and Hydrocarbons, (1), pp. 9-12. (In Russian).

2. Yashchenko, I. G. (2014). Difficult-to-recover oils: physical and chemical properties and environmental impacts of production. Exposition Oil & Gas, (1(33)), pp. 30-35. (In Russian).

3. Purtova, I. P., Varichenko, A. I., & Shpurov, I. V. (2011). Trudnoizvlekayemyye zapasy nefti. Terminologiya. Problemy i sostoyaniye osvoyeniya v Rossii. Nauka i TEK, (6), pp. 21-26.

4. Yashchenko, I. G. (2017). Geography and physical-chemical properties of sulfur oils. Exposition Oil & Gas, (5(58)), pp. 13-17. (In Russian).

5. Yashchenko, I. G., & Polishchuk, Yu. M. (2011). Geografiya vysokosmolistykh neftey i osobennosti ikh fiziko-khimicheskikh svoystv. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 318(1), pp. 99-102. (In Russian).

6. Parfenova, N. M., Kosyakova, L. S., Artem'yev, V. Yu., Grigoryev, Ye. B., & Shafiyev, I. M. (2012). Fiziko-khimicheskaya kharakteristika kondensatov Chayandinskogo neftegazokondensatnogo mestorozhdeniya. Nauchno-tekhnicheskiy sbornik Vesti gazovoy nauki, № 3, pp. 2035. (In Russian).

7. Istratov, I. V., Serov, S. G. (2019). Physical and chemical properties and composition of hydrocarbons (oil, gas, condensate) of fields in the Lena-Tunguska oil and gas province. Trudy Rossiyskogo gosudarstvennogo universiteta nefti i gaza imeni I. M. Gubkina, (3(296), pp. 18-32. (In Russian).

8. Barskaya, Ye. Ye., Ganeyeva, Yu. M., Yusupova, T. N., & Dayanova, D. I. (2012). Prognozirovaniye problem pri dobyche neftey na osnove analiza ikh khimicheskogo sostava i fizikokhimicheskikh svoystv. Vestnik Kazanskogo tekhnologicheskogo universiteta, 15(3), pp. 166-169. (In Russian).

9. Khalikova, D. A., Tukhvatullina, A. Z., Ganeyeva, Yu. M., & Yusupova, T. N. (2009). Osobennosti vliyaniya sostava neftey mestorozhdeniy Kirgizii na formirovaniye ikh fizikokhimicheskikh svoystv. Vestnik Kazanskogo tekhnologicheskogo universiteta, (5), pp. 349-357. (In Russian).

10. Panychev, A. D., Kutovoy, D. V., Nabokov, A. A., Gaynullin, E. F., & Remizov, A. Ye. (2019). Razrabotka gazokondensatnykh mestorozhdeniy shel'fa. Delovoy zhurnal Neftegaz.RU, (5), pp. 94-97. (In Russian).

11. Zinchenko, I. A., Parfenova, N. M., Kosyakova, L. S., Shafiyev, I. M., Grigoryev, Ye. B. (2011). Issledovaniya fiziko-khimicheskikh svoystv i komponentnogo sostava nefti Chayandinskogo neftegazokondensatnogo mestorozhdeniya. Nauchno-tekhnicheskiy sbornik Vesti gazovoy nauki, (1), pp. 16-25. (In Russian).

12. Yashchenko, I. G., & Polishchuk, Yu. M. (2017). Fiziko-khimicheskiye svoystva trudnoizvlekayemykh neftey Rossiyskoy arktiki. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 328(6), pp. 64-71. (In Russian).

13. Voloshin, A. I., Dokichev, V. A., Fahreeva, A. V., Yakubov, M. R., & Tomilov, Yu. V. (2019). Composition and physico-chemical properties of high-viscosity oil of Varadero oil field (Cuba). Oil Industry, (9), pp. 35-37. (In Russian).

14. Koryukova, S. V., & Deryugina, O. P. (2018). Analiz tekhnologicheskikh parametrov s tsel'yu optimizatsii raboty ustanovok podgotovki nefti na Zapadno-Sibirskikh mestorozhdeniyakh. Novyye tekhnologii neftegazovomu regionu: materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii studentov, aspirantov i molodykh uchenykh. Tyumen, pp. 74-77. (In Russian).

15. Zhi, Y., & Caineng, Z. (2019). "Exploring petroleum inside source kitchen": Connotation and prospects of source rock oil and gas. Petroleum Exploration and Development, 46(1), pp. 181-193. (In English). DOI: 10.1016/S1876-3804(19)30018-7

16. Chengzao, J. (2017). Breakthrough and significance of unconventional oil and gas to classical petroleum geology theory. Petroleum Exploration and Development, 44(1), pp. 1-10. (In English). DOI: 10.1016/S1876-3804(17)30002-2

17. Liu, L., Hou, S., & Zhang, N. (2019). Incorporating numerical molecular characterization into pseudo-component representation of light to middle petroleum distillates. Chemical Engineering Science: X, 3. (In English). Available at: https://doi.org/10.1016/j.cesx.2019.100029

18. Aghamiri, S., Tamtaji, M., & Ghafoori, M. J. (2018). Developing a K-value equation for predict dew point pressure of gas condensate reservoirs at high pressure. Petroleum, 4(4), pp. 437-438. (In English). DOI: 10.1016/j.petlm.2017.08.002

19. Ashok, A., Cusack, M., Saderne, V., Krishnakumar, P. K., Rabaoui, L., Qurban, M. A.,… Agusti, S. (2019). Accelerated burial of petroleum hydrocarbons in Arabian Gulf blue carbon repositories. Science of the Total Environment, (669), pp. 205-212. (In English). DOI: 10.1016/j.scitotenv.2019.01.437

20. Yong, L., Jing, Z., Xueyong, W., Yuwei, J., Jie, Y. (2010). A new reservoir simulation approach for fractured gas-condensate reservoirs. Petroleum Exploration and Development, 37(5), pp. 592-595. (In English). DOI: 10.1016/S1876-3804(10)60056-0

21. Parfenova, N. M., Grigoryev, Ye. B., Kosyakova, L. S., Krayn, D. R., Shafiyev, I. M., Loginov, V. A.,… Tomilenko, A. A. (2017). Raw hydrocarbons of Chayanda oil-gas-condensate field: gas, condensate and oil. Nauchno-tekhnicheskiy sbornik Vesti gazovoy nauki, (30), pp. 139149. (In Russian).

22. Kosyakova, L. S., Parfenova, N. M., Krayn, D. R., Shafiyev, I. M., & Loginov, V. A. (2017). On measuring quality of reservoir fluid samples. Nauchno-tekhnicheskiy sbornik Vesti gazovoy nauki, (30), pp. 125-131. (In Russian).

23. Durmish'yan, A. G. (1979). Gazokondensatnyye mestorozhdeniya. Moscow, Nedra Publ., 335 p. (In Russian).


Review

For citations:


Deryugina O.P., Skvortsova E.N., Gurov Yu.P. Research and development of optimal technological solutions for the processing of the Pyakyakhinskoye gas condensate field in the Bolshekhetskaya depression. Oil and Gas Studies. 2019;(6):149-158. (In Russ.) https://doi.org/10.31660/0445-0108-2019-6-149-158

Views: 483


ISSN 0445-0108 (Print)