Plastic strength of cutting parts of tools from STM when there is turning heat-resistant alloys
https://doi.org/10.31660/0445-0108-2020-1-106-113
Abstract
The article is devoted to the modeling of physical and chemical creep process, which determines the plastic strength of cutting parts at the vertices of the tools from STM. The creep process is associated with the phenomena of diffusion and diffusion wear of the tool from STM in the zone of quasi-brittle transition (that is, the temperature transition of tool STM from brittle to plastic state at high cut-ting temperatures) with thin turning of heat-resistant alloys and steels. Turning of heat-resistant alloys at high cutting temperatures, corresponding to the quasi-brittle transition, allows the machining process at ultra-high cutting speeds, which expands the application of tools from STM. We have created mathematical model of wear and destruction of the cutting part at the top of the tool and STM due to diffusion phenomena in the process of thin turning of a heat-resistant alloy.
About the Authors
V. A. BelozerovRussian Federation
Vladimir A. Belozerov - Candidate of Engineering, Associate Professor at the Department of Technology of Machine Building, Industrial University of Tyumen.
Tyumen.
Yu. A. Tempel
Russian Federation
Yulia A. Tempel - Assistant at the Department of Technology of Machine Building, Industrial University of Tyumen.
Tyumen.
References
1. Poduraev, V. N. (1985). Tekhnologiya fiziko-khimicheskikh metodov obrabotki. Moscow, Mashinostroenie Publ., 264 p. (In Russian).
2. Loladze, T. N. (1982). Prochnost' i iznosostoykost' rezhushchego instrumenta. Moscow, Mashinostroenie Publ., 320 p. (In Russian).
3. Belozerov, V. A., & Uteshev, M. Kh. (2005). Modelirovanie protsessa polzuchesti i energiya aktivatsii pri diffuzionnom iznose rezhushchey chasti instrumenta iz STM. Nauchno-tekhnicheskie problemy i prognozirovanie nadezhnosti i dolgovechnosti konstruktsiy i metody ikh resheniya. Trudy VI Mezhdunarodnoy konferentsii. St. Petersburg, St. Petersburg Polytechnic University Publ., pp. 70-72. (In Russian).
4. Bokshteyn, B. S. (1978). Diffuziya v metallakh. Moscow, Metallurgiya Publ., 248 p. (In Russian).
5. Kreymer, G. S. (1971). Prochnost' tverdykh splavov. 2nd edition. Moscow, Metallurgiya Publ., 248 p. (In Russian).
6. Vasin, S. A., Vereshchaka, A. S., & Kushner, V. S. (2001). Rezanie metallov: Termomekhanicheskiy podkhod k sisteme vzaimosvyazey pri rezanii: uchebnik dlya tekhnicheskikh vuzov. Moscow, Bauman Moscow State Technical University Publ., 448 p. (In Russian).
7. Kushner, V. S. (1982). Termomekhanicheskaya teoriya protsessa nepreryvnogo rezaniya plastichnykh materialov. Irkutsk, Irkutsk University Publ., 180 p. (In Russian).
8. Nekrasov, R. Yu., Starikov, A. A., & Korchuganov, M. A. (2014). Performance Assessment of Carbide Tooling under Thermal and Loading Conditionds. Applied Mechanics and Materials, 682, 414-417. (In English). DOI: 10.4028/www.scientific.net/AMM.682.414
9. Nekrasov, R. Yu., Putilova, U. S., Nekrasov, Yu. I., Starikov, A. I., & Kharitonov, D. A. (2014). Diagnostics of cut-layer deformation and rational tool loading in numerically controlled lathes. Russian Engineering Research, 34(12), pp. 826-828. (In English). DOI: 10.3103/S1068798X14120181
10. Nekrasov, R. Yu., Soloviev, I. V., & Putilova, U. S. (2015). Laser Interferometry Method of Stress Determination in Loaded Cutting Tool Parts. Applied Mechanics and Materials, 698, pp. 537-541. (In English). DOI: 10.4028/www.scientific.net/AMM.698.537
11. Nekrasov, R. Yu., Tempel, Yu. A., Tempel, O. A., Solovyov, I. V., & Starikov, A. I. (2017). Numerical studies to determine spatial deviations of a work piece that occur when machining on CNC machines. MATEC Web of Conferences, 129. (In English). Available at: https://doi.org/10.1051/matecconf/201712901072
12. Belitskiy, M. Ya., Gaydarenko, F. L., & Batalin, G. I. (1976). Kontaktnye vzaimodeystviya nikhroma KH20N80 s nitridom bora. Soviet Powder Metallurgy and Metal Ceramics, (12), pp. 31-39. (In Russian).
13. Adler, Yu. P., Markova, E. V., & Granovskiy, Yu. V. Planirovanie eksperimenta pri poiske optimal'nykh usloviy. Moscow, Nauka Publ., 279 p. (In Russian).
14. Nalimov, V. V., & Chernova, A. N. (1965). Statisticheskie metody planirovaniya ekstremal'nykh eksperimentov. Moscow, Nauka Publ., 340 p. (In Russian).
15. Nekrasov, R. Yu., Starikov, A. I., & Soloviev, I. V. (2015). Simulation of Technological Systems for Diagnosis and Management Machining with CNC. Applied Mechanics and Materials, 770, pp. 617-621. (In English). DOI: 10.4028/www.scientific.net/AMM.770.617
16. Starkov, V. K. (2009). Physics and optimization of cutting of materials Moscow, Mashinostroenie Publ., 640 p. (In Russian).
17. Lomova, O. S. (2013). Mathematical modeling of structural changes in the surfaces of work pieces with thermal perturbations in the process of grinding. Omsk Scientific Bulletin, (2-120), pp. 95-98. (In English).
18. Volkova, V. N., Kozlov, V. N., Lypar', Yu. I., Firsov, A. N., Chernen'kaya, L. V., Gorelova, G. V., & Paklin, N. B. (2014). Modelirovanie sistem i protsessov. Moscow, Urait Publ., 592 p. (In Russian).
19. Belozerov, V. A., Silich, A. A., & Uteshev, M. H. (2014). Thermomechanical model of the process of fine turning of heat-resistant alloys by tools from STM. Higher educational institutions news. Neft' i gaz, (4), pp. 91-94. (In Russian).
20. Belozerov, V. A., Uteshev, M. Kh., & Kaliev, A. N. (2013). Sverkhskorostnoe tochenie zharoprochnykh splavov instrumentami s dvukhsloynymi plastinami iz kompozitsionnykh STM. Nauka i tekhnologii. Tezisy dokladov XXXIII Vserossiyskoy konferentsii po problemam nauki i tekhnologiy. Miass, p. 38. (In Russian).
Review
For citations:
Belozerov V.A., Tempel Yu.A. Plastic strength of cutting parts of tools from STM when there is turning heat-resistant alloys. Oil and Gas Studies. 2020;(1):106-113. (In Russ.) https://doi.org/10.31660/0445-0108-2020-1-106-113