Research of laminated rubbers influence on the LNG-tank seismic resistance
https://doi.org/10.31660/0445-0108-2020-1-122-127
Abstract
The article developed a finite-element model of a tank for storing liquefied natural gas. The influence of the damping coefficient of laminated rubbers on the movement of the tank and the acceleration of the stored product at different frequencies of seismic waves is numerically studied. Graphic dependences of the displacement and acceleration of the structure along the height of the wall are established.
About the Authors
A. A. TarasenkoRussian Federation
Aleksandr A. Tarasenko - Doctor of Engineering, Professor at the Department of Transport of Hydrocarbon Resources, Industrial University of Tyumen.
Tyumen.
P. V. Chepur
Russian Federation
Petr V. Chepur - Сandidate of Engineering Associate Professor at the Department of Applied Mechanics, Industrial University of Tyumen.
Tyumen.
A. A. Gruchenkova
Russian Federation
Alesya A. Gruchenkova - Assistant at the Department of Oil and Gas Industry, Industrial University of Tyumen.
Tyumen.
References
1. Xu Bo (2013). Global energy development tendency and realistic choice of china energy structure adjustment . Coal Economic Research, (33(1)), pp. 5-9. (In English).
2. Li Yang, Li Zili, & Bi Jing. (2009). The study on frequency characteristics and isolation mechanism of isolated liquid storage tanks. World Earthquake Engineering, (25(4)), pp. 117-124. (In English).
3. Safaryan, M. K. (1987). Metallicheskie rezervuary i gazgol'dery. Moscow, Nedra Publ., 200 p. (In Russian).
4. Konovalov, P. A., Mangushev, R. A., Sotnikov, S. N., Zemlyanskiy, A. A., & Tarasenko, A. A. (2009). Fundamenty stal'nykh rezervuarov i deformatsii ikh osnovaniy. Moscow, Izda-tel'stvo Assotsiatsii stroitel'nykh vuzov Publ., 336 p. (In Russian).
5. Tarasenko, A. A. (1999). Razrabotka nauchnykh osnov metodov remonta vertikal'nykh stal'nykh rezervuarov. Diss. dokt. tekhn. nauk. Tyumen, 299 p. (In Russian).
6. Zhou Fulin. (1997). Vibration control of engineering structure. Seismological Press, pp. 24-25. (In English).
7. Baofeng, Z., Haiying, Y., Ruizhi, W., & Lili, X. (2013). A new way of permanent displacement identification. China Civil Engineering Journal, (46(2)), pp. 135-140. (In English).
8. Chen Yanhua, Liu Jianjun, & Yuan Kang. (2009). Analysis on seismic dynamic response of base-isolated structures with laminated rubber bearings. Industrial Construction, (39), pp. 289-294. (In English).
9. Tarasenko, A. A., Chepur, P. V., Guan Youhai, & Gruchenkova, A. A. (2018). The re-search of seismic resistance of tank with linear-spectral method application. Oil Industry, (1), pp. 85-87. (In Russian). DOI: 10.24887/0028-2448-2018-1-85-87
10. Vasilyev, G. G., Tarasenko, A. A., Chepur, P. V., & Guan Youhai (2015). Seismic analysis of vertical steel tanks RVSPK-50000 using a linear-spectral method. Oil Industry, (10), pp. 120-123. (In Russian).
11. Tarasenko, A. A., Chepur, P. V., Guan Youhai, & Gruchenkova, A. A. (2018). Analiz seysmostoykosti krupnogabaritnogo rezervuara RVS-20000 chislennym metodom. Aktual'nye problemy nauchnogo znaniya. Novye tekhnologii TEK-2018: materialy II Mezhdunarodnoy nauchno-prakticheskoy konferentsii. Tyumen, pp. 115-118. (In Russian).
12. Chepur, P. V., Tarasenko, A. A., & Esieva, K. A. (2018). Issledovanie seysmostoykosti rezervuara s primeneniem lineyno-spektral'nogo metoda. Energosberezhenie i innovatsionnye tekhnologii v toplivno-energeticheskom komplekse: materialy Natsional'noy s mezhdunarodnym uchastiem nauchno-prakticheskoy konferentsii studentov, aspirantov, molodykh uchenykh i spetsialistov, posvyashchennoy desyatiletiyu sozdaniya Instituta promyshlennykh tekhnologiy i inzhi-niringa. Tyumen, Industrial University of Tyumen Publ., pp. 181-185. (In Russian).
13. Vabishchevich, P. N. (2016). Chislennye metody. Moscow, Lenand, 320 p. (In Russian).
14. Zaripov, R. S., & Valyaeva, E. R. (2016). Chislennye metody analiza. Priblizhenie funktsiy, differentsial'nye i integral'nye uravneniya. St. Petersburg, Lan P Publ., 400 p. (In Russian).
15. Bathe, K.-J., & Wilson, E. L. (1943). Numerical methods in finite element analуsis. Upper Saddle River, New Jersey, Prentice-Hall. (In English).
16. Filin, A. P. (1981). Prikladnaya mekhanika tverdogo deformiruemogo tela: soprotivlenie materialov s elementami teorii sploshnykh sred i stroitel'noy mekhaniki. Tom 3. Moscow, Nauka, 480 p. (In Russian).
17. Semakin, I. G., Rusakova, O. L., Tarunin, E. L., & Shkaraputa, A. P. (2018). Programmirovanie, chislennye metody i matematicheskoe modelirovanie. Moscow, KnoRus Publ., 288 p. (In Russian).
18. Lukovskiy, I. A., & Pel'kevich, A. M. (1985). O dvizhenii zhidkosti v koleblyushchemsya pryamom krugovom tsilindre. Sbornik nauchnykh trudov instituta matematiki AN USSR. Kiev, pp. 3-11. (In Russian).
19. Zolotenko, G. F. (2003). Komp'yuternoe modelirovanie na osnove uravneniy Gamil'tona ne-lineynykh kolebaniy zhidkosti v tsilindricheskom bake. Prikladnaya gіdromekhanіka, (3), pp. 19-40. (In Russian).
20. Birbraer, A. N. (1998). Seismic analysis of structures. St. Petersburg, Nauka Publ., 255 p. (In Russian).
Review
For citations:
Tarasenko A.A., Chepur P.V., Gruchenkova A.A. Research of laminated rubbers influence on the LNG-tank seismic resistance. Oil and Gas Studies. 2020;(1):122-127. (In Russ.) https://doi.org/10.31660/0445-0108-2020-1-122-127