Preview

Oil and Gas Studies

Advanced search

Analysis of solutions of the Muskat — Leverett non-isothermal model for different types of oils

https://doi.org/10.31660/0445-0108-2020-2-26-37

Abstract

In this article, numerical methods are used to analyze the features of solutions to the non-isothermal Muskat — Leverett two-phase filtration model. The structure of solutions to thermal waterflooding problems for low-viscosity and high viscosity types of oil is considered. Typical solutions for different types of functional parameters of the model are shown. The simulations show that hot water displacement of high-viscosity oil is an effective method of increasing oil recovery. In particular, if in the case of thermal flooding the reservoir with low-viscosity oil, recovery increases by only a few percent, then for a field with high viscosity oil, thermal flooding increases oil recovery by tens of percent. It is shown that in order to increase the efficiency of the thermal flooding it is necessary to pump hot water with the minimum possible capillary parameter. High total filtration rate reduces total heat loss through the roof and sole of the formation. Numerical experiments have shown that for an adequate simulation of thermal flooding, in addition to taking into account changes in oil viscosity, it is necessary to take into account the action of capillary forces and the variation of relative phase permeability during the operation of the oil field.

About the Authors

O. B. Bocharov
Novosibirsk Technology Center Baker Hughes JSC
Russian Federation

Oleg B. Bocharov, Candidate of Physics and Mathematics, Associate Professor

Novosibirsk



I. G. Telegin
Industrial University of Tyumen
Russian Federation

Igor G. Telegin, Candidate of Physics and Mathematics, Associate Professor at the Department of Development and Exploitation of Oil and Gas Fields

Tyumen



References

1. Alishaev, M. G., Rozenberg, M. D., & Teslyuk, E. V. (1985). Neizotermicheskaya fil'tratsiya pri razrabotke neftyanykh mestorozhdeniy. Moscow, Nedra Publ., 271 p. (In Russian).

2. Baybakov, N. K., & Garushev, A. R. (1977). Teplovye metody razrabotki neftyanykh mestorozhdeniy. Moscow, Nedra Publ., 238 p. (In Russian).

3. Badalyants, G. A. & Ogadzhanyants, V. P. (1976). Issledovanie vliyaniya temperatury na soderzhanie svyazannoy vody v poristykh sredakh. Issledovanie v oblasti razrabotki neftyanykh mestorozhdeniy i gidrodinamiki plasta, (57). Moscow, VNII Neftegaz Publ., pp. 43-46.

4. Bokserman, A. A., & Yakuba, S. I. (1987). Chislennoe issledovanie protsessa vytesneniya nefti parom. Mekhanika zhidkosti i gaza, (4), pp. 78-84. (In Russian).

5. Bokserman, A. A., & Yakuba, S. I. (1977). O raschetakh protsessa vytesneniya nefti otorochkami para. Trudy VNIIneft', (61), pp. 76-85.

6. Bulygin, V. Ya. (1974). Gidromekhanika neftyanogo plasta. Moscow, Nedra Publ., 230 p. (In Russian).

7. Bulygin, V. Ya., & Lokotunin, V. A. (1977). Issledovanie neizotermicheskoy fil'tratsii dvukhfaznoy zhidkosti. Chislennoe reshenie zadach fil'tratsii mnogofaznoy neszhimaemoy zhidkosti. Novosibirsk, pp. 44-51. (In Russian).

8. Bulygin, V. Ya., Kozhevatov, Yu. I., & Lokotunin, V. A. (1980). Raschety protsessov teplo- i massoperenosa pri vytesnenii nefti vodoy. Chislennoe reshenie zadach fil'tratsii mnogofaznoy neszhimaemoy zhidkosti. Novosibirsk, pp. 53-58. (In Russian).

9. Rubinshteyn, L. I. (1972). Temperaturnye polya v neftyanykh plastakh. Moscow, Nedra Publ., 276 p. (In Russian).

10. Chekalyuk, E. B. (1965). Termodinamika neftyanogo plasta. Moscow, Nedra Publ., 238 p. (In Russian).

11. Bocharov, O. B., & Monakhov, V. N. (1988). Kraevye zadachi neizotermicheskoy dvukhfaznoy fil'tratsii v poristykh sredakh. Dinamika sploshnoy sredy, (86), pp. 47-59. (In Russian).

12. Bocharov, O. B., & Telegin, I. G. (2002). On some peculiarities of nonisothermal filtration of immiscible fluids. Thermophysics and Aeromechanics, 9(3), pp. 459-467. (In Russian).

13. Bocharov, O.B., & Telegin, I. G. (2004). Numerical study of non-isothermal filtration of immiscible fluid in gravitational field. Thermophysics and Aeromechanics, 11(2), pp. 281-290. (In Russian).

14. Bocharov, O.B., & Telegin, I. G. (2011). Analysis of gravity forces influence on water saturation distribution near the oil wells. Higher Educational Institutions News. Neft' i Gas, (3), pp. 30-35. (In Russian).

15. Samarskiy, A. A. (1971). Vvedenie v teoriyu raznostnykh skhem. Moscow, Nauka Publ., 552 p. (In Russian).

16. Bocharov, O. B., Kuznetsov, V. V., & Chekhovich, Yu. V. (1988). O strukture resheniy zadachi Rappoporta-Lisa. Dinamika sploshnoy sredy, (85). Novosibirsk, pp. 13-21. (In Russian).

17. Grachev, S. I., Khairullin, A. A., & Khairullin, Az. A. (2012). Approximation of relative phase permeabilities by cubic parabola. Higher Educational Institutions News. Neft' i Gas, (2), pp. 37-43. (In Russian).

18. Polubarinova-Kochina, P. Ya. (Ed.) (1969). Razvitie issledovaniy po teorii fil'tratsii v SSSR (1917-1967). Moscow, Nauka Publ., 546 p. (In Russian).


Review

For citations:


Bocharov O.B., Telegin I.G. Analysis of solutions of the Muskat — Leverett non-isothermal model for different types of oils. Oil and Gas Studies. 2020;(2):26-37. (In Russ.) https://doi.org/10.31660/0445-0108-2020-2-26-37

Views: 470


ISSN 0445-0108 (Print)