Preview

Oil and Gas Studies

Advanced search

Studying of the wall cylindrical rigidity influence on the stress-strain state of the tank during local settlement

https://doi.org/10.31660/0445-0108-2020-2-98-106

Abstract

The article numerically researched the stress-strain state of the tank RVS-20000 at the settlement zone is located near the tank wall. A numerical model of the tank was developed in accordance with the actual geometric dimensions, taking into account all structural elements of the structure and the maximum operating loads. When modeling local settlement to account for the spatial work of the soil, the model of the Pasternak soil base was used. The stress-strain state calculation of the tank was performed at values of the radius of the drawdown zone from 1 to 10 m. The choice of this interval is due to the fact that in more than 92 % of cases, tanks with local bottom settlements fall within this range of values.

The dependences of the maximum acting stresses in the wall of the internal combustion engine on the position of the inhomogeneity area in the soil base are established. The boundary of the zone of action of the edge effect from the tank wall is established. If the center of the heterogeneity area is located in this zone, it is necessary to conduct additional analysis of the tank metal structures stress-strain state when assigning the maximum settlement.

About the Authors

A. A. Gruchenkova
Industrial University of Tyumen
Russian Federation

Alesya A. Gruchenkova, Assistant at the Department of Oil and Gas Industry

Tyumen



P. V. Chepur
Industrial University of Tyumen
Russian Federation

Petr V. Chepur, Сandidate of Engineering, Associate Professor at the Department of Applied Mechanics

Tyumen



A. A. Tarasenko
Industrial University of Tyumen
Russian Federation

Aleksandr A. Tarasenko, Doctor of Engineering, Professor at the Department of Transport of Hydrocarbon Resources

Tyumen



References

1. Galeev, V. B. (1987). Napryazhenno-deformirovannoe sostoyanie rezervuarov, postroennykh na slabykh pereuvlazhnennykh gruntakh: diss. dokt. tekhn. nauk. Tyumen, 668 p. (In Russian).

2. Rozenshteyn, I. M. (1995). Avarii i nadezhnost' stal'nykh rezervuarov. Moscow, Nedra Publ., 253 p. (In Russian).

3. Konovalov, P. A., Mangushev, R. A., Sotnikov, S. N., Zemlyanskiy, A. A., & Tarasenko, A. A. (2009). Fundamenty stal'nykh rezervuarov i deformatsii ikh osnovaniy. Moscow, Assotsiatsii stroitel'nykh vuzov Publ., 336 p. (In Russian).

4. Tarasenko, A. A. (1999). Razrabotka nauchnykh osnov metodov remonta vertikal'nykh stal'nykh rezervuarov: diss. dokt. tekhn. nauk. Tyumen, 299 p. (In Russian).

5. Bell, R. A., & Iwakiri, J. (1980). Settlement comparison used in tank-failure study. Journal of the Geotechnical Division, 106(GT2), pp. 153-169. (In English).

6. Clarke, J. S. (1971). Recent tank bottom and foundation problems. Proceedings of American Petroleum Institute. 36 th Midyear Meeting, Division of Refuting. (In English). Available at: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL7573000698

7. Penman, A. D. лю. (1978). Soil-structure interaction and deformation problems with large oil tanks. Proceedings of the International Symposium on Soil-Structure Interaction, University of Roorkee (India), 11(2), pp. 21-26. (In English).

8. Gorelov, A. S. (2009). Neodnorodnye gruntovye osnovaniya i ikh vliyanie na rabotu vertikal'nykh stal'nykh rezervuarov. St. Petersburg, Nedra Publ., 216 p. (In Russian).

9. Safaryan, M. K. (1987). Metallicheskie rezervuary i gazgol'dery. Moscow, Nedra Publ., 200 p. (In Russian).

10. Slepnev, I. V. (1988). Napryazhenno-deformirovannoe uprugoplasticheskoe sostoyanie stal'nykh vertikal'nykh tsilindricheskikh rezervuarov pri neravnomernykh osadkakh osnovaniy: diss. kand. tekhn. nauk. Moscow, 225 p.

11. Burenin, V. A. (1980). Issledovanie vliyaniya neravnomernykh osadok na napryazhenno-deformirovannoe sostoyanie stal'nogo vertikal'nogo tsilindricheskogo rezervuara: diss. kand. tekhn. nauk. Ufa, 157 p. (In Russian).

12. Tarasenko, A. A., Nikolaev, N. V., Khoperskiy, G. G., & Sayapin, M. V. (1997). Napryazhenno-deformirovannoe sostoyanie stenki rezervuara pri neravnomernykh osadkakh osnovaniya. Izvestiya vysshikh uchebnykh zavedeniy. Neft' i gaz, (3), pp. 75-79. (In Russian).

13. Gruchenkova, A. A., & Tarasenko, A. A. (2019). The stress-strain state of the tank on soil foundation with local inhomogeneity. Oil and Gas Studies, (3), pp. 96-101. (In Russian). DOI: 10.31660/0445-0108-2019-3-96-101

14. Bruyaka, V. A., Fokin, V. G., Soldusova, E. A., Glazunova, N. A., & Adeyanov, I. E. (2010). Inzhenernyy analiz v ANSYS Workbench. Chast' 1. Samara, Samara State Technical University Publ., 271 p. (In Russian).

15. Nekhaev, G. A. (2005). Proektirovanie i raschet stal'nykh tsilindricheskikh rezervuarov i gazgol'derov nizkogo davleniya. Moscow, ASV Publ., 216 p. (In Russian).

16. Zienkiewicz, O. C. (1971). The finite element method in engineering science. London, McGraw-Hill, 521 p. (In English).

17. Laevskiy, Yu. M. (1999). Metod konechnykh elementov (osnovy teorii, zadachi). Novosibirsk, Novosibirsk State University Publ., 166 p. (In Russian).

18. Timoshenko, S., & Woinowsky-Krieger, S. (1959). Theory of plates and shells. 2 nd edition. New York, McGraw-Hill, 580 p.


Review

For citations:


Gruchenkova A.A., Chepur P.V., Tarasenko A.A. Studying of the wall cylindrical rigidity influence on the stress-strain state of the tank during local settlement. Oil and Gas Studies. 2020;(2):98-106. (In Russ.) https://doi.org/10.31660/0445-0108-2020-2-98-106

Views: 388


ISSN 0445-0108 (Print)