Preview

Oil and Gas Studies

Advanced search

Calculation of the rate of bulk fluid flow by exponential and logarithmic expressions

https://doi.org/10.31660/0445-0108-2020-4-77-87

Abstract

A formula is presented to calculate the rate of bulk fluid flow in accord with hydrodynamic flow parameters and physical-chemical characteristics of pumping fluids. The formula was derived based on a model knowledge of fluid flow as a continuous sequence of strains — rotations of fluid fragments by the action of shear stress. Laboratory testing of volumetric flow rate depending on the hydrodynamic flow parameters and physical-chemical properties of liquids performed on a turbulent rheometer and as working fluids used ethanol and gasoline. The power and logarithmic dependences of the volume velocity were also checked using real data from the operation of oilfield pipelines. The results obtained satisfactory agree with the calculated data.

About the Authors

V. N. Manzhai
Institute of Petroleum Chemistry of Siberian Branch of Russian Academy of Sciences
Russian Federation

Vladimir N. Manzhai, Doctor of Chemistry, Senior Researcher

Tomsk



A. A. Milke
Tomsk Polytechnic University
Russian Federation

Aleksandr A. Milke, Postgraduate at the Department of Geology and Oil Field Development, Tomsk Polytechnic University, Employee of "Gazpromneft-Vostok" LLC

Tomsk



D. A. Zubarev
Tomsk State University
Russian Federation

Daniil A. Zubarev, Student at the Department of Macromolecular Compounds and Petrochemistry

Tomsk



References

1. Tetel'min, V. V. & Yazev, V. A. (2009). Neftegazovoe delo: polnyy kurs. Moscow, Intellekt Publ., 799 p. (In Russian).

2. Aliev, R. A., Belousov, V. D., Nemudrov, A. G., Yufin, V. A., & Yakovlev, E. I. (1988). Truboprovodnyj transport nefti i gaza. 2nd edition, revised and advanced. Moscow, Nedra Publ., 368 p. (In Russian).

3. Bakhtizin, R. N, Mastobaev, B. N, Soshchenko, A. E., & Makarenko, O. A. (2019). Development of the global oil pipeline transportation system. Science & Technologies: Oil and Oil Products Pipeline Transportation, 9(1), рр. 107-117. (In Russian).

4. Lojtsyanskij, L. G. (1978). Mekhanika zhidkosti i gaza. 5th edition, revised. Moscow, Nauka Publ., 736 p. (In Russian).

5. Shterenlikht, D. V. (1984). Gidravlika. Moscow, Energoatomizdat Publ., 639 p. (In Russian).

6. Fuks, G. I. (2003). Vyazkost' i plastichnost' nefteproduktov. Moscow - Izhevsk, Institut komp'yuternykh issledovanij Publ., 328 p. (In Russian).

7. Rabinovich, E. Z. (1980). Gidravlika. Moscow, Nedra Publ., 278 p. (In Russian).

8. Bakhtizin, R. N., Gareev, M. M., Lisin, Yu. V., Manzhay, V. N., Mastobaev, B. N., Nesyn, V. G., & Sunagatullin, R. Z. (2018). Nanotekhnologii dlya snizheniya gidravlicheskogo soprotivleniya truboprovodov. St. Petersburg, Nedra Publ., 347 p. (In Russian).

9. Маlkin, А. Ya., Nеsyn, G. V., Ilyusnikov, А. V., & Manzhai, V. N. (2001). A method for monitoring polymer reactions in very dilute solutions. Journal of Non-Newtonian Fluid Mechanics, 97(2-3), рр. 195-206. (In English). DOI: 10.1016/S0377-0257(00)00225-1

10. Nesyn, G. V., Sunagatullin, R. Z., Shibaev, V. P., & Malkin, A. Ya. (2018). Drag reduction in transportation of hydrocarbon liquids: From fundamentals to engineering applications. Journal of Petroleum Science and Engineering, 161, рр. 715-725. (In English). DOI: 10.1016/j.petrol.2017.10.092

11. Manzhai, V. N. (2019).Turbulent flow of oil, oil products and liquefied natural gas with polymer additives. Science & Technologies: Oil and Oil Products Pipeline Transportation, 9(1), рр. 92-97. (In English). DOI: 10.28999/2541-9595-2019-9-1-92-97

12. Manzhai, V. N., Nasibullina, Yu. R., Kuchevskaya, A. S., & Filimoshkin, A. G. (2014). Physico-chemical concept of drag reduction nature in dilute polymer solutions (the Toms effect). Chemical Engineering and Processing: Process Intensification, 80, pp. 38-42. (In English).

13. Manzhai, V. N., & Ilyushikov, A. V. (2008). Volumetric rate of a turbulent newtonian fluid flow in a cylindrical channel. Journal of Engineering Physics and Thermophysics, 81(5), рр. 893-896. (In English).

14. Gareev, M. M., Nesyn, G. V., & Manzhai, V. N. (1992). Rezul'taty vvedeniya v potok nefti prisadki dlya snizheniya soprotivleniya. Oil industry, (10), рр. 30-31. (In Russian).

15. Manzhai, V. N., Ilyushnikov, A. V., Gareev, M. M., & Nesyn, G. V. (1993). Laboratory studies and commercial tests of a polymeric agent for reduction of the power consumption on an oil pipeline. Journal of Engineering Physics and Thermophysics, 65(5), pp. 1041-1043. (In English).

16. Kutukov, S. E., Bazhaykin, S. G., & Golianov, A. I. (2018). Improving the efficiency of batching by optimization of the oil mixture composition. Oil industry, (1), рр. 88-91. (In Russian). DOI: 10.24887/0028-2448-2018-1-88-91

17. Burger, E. D., Munk, W. R. & Wahl, H. A. (1982). Flow Increase in the Trans Alaska Pipeline Through Use of a Polymeric Drag-Reducing Additive. Journal of Petroleum Technology, 34(2), рp. 377-386. (In English). DOI: 10.2118/9419-pa

18. Fridlyand, Ya. M., Kazantsev, M. N., Timofeev, F. V., & Zamalaev, S. N. (2018). The practice of increasing the volume of the transportation of oil products by major pipeline transport. Oil industry, (4), рр. 100-103. (In Russian). DOI: 10.24887/0028-2448-2018-4-100-103


Review

For citations:


Manzhai V.N., Milke A.A., Zubarev D.A. Calculation of the rate of bulk fluid flow by exponential and logarithmic expressions. Oil and Gas Studies. 2020;(4):77-87. (In Russ.) https://doi.org/10.31660/0445-0108-2020-4-77-87

Views: 475


ISSN 0445-0108 (Print)