Evaluating the efficiency of using different variants of background models for inversion calculations
https://doi.org/10.31660/0445-0108-2020-5-36-52
Abstract
The use of the method of seismic data acoustic inversion, in the presence of thick gas cap, can lead to difficulties when building background models of elastic parameters. In this regard, in the conditions of acoustically contrast thin environments within the perimeter of the Russkoye oil and gas condensate field, in addition to the standard version based on the well data, the authors considered a number of modified techniques ("block", "flat", and background models). The use of these background models provided the best results and made it possible to significantly improve the quality of predicting rock properties; based on the drilling results, effective penetration was ensured at 66 %, which was 102 % of the plan. Also, based on the inversion results, it became possible to predict reservoir properties using the Bayesian lithotype classification method.
About the Authors
I. A. KopysovaRussian Federation
Irina A. Kopysova, Team Leader at Drilling Support Section, Yamal Subsurface Division UGRM Yamal
Tyumen
A. S. Shirokov
Russian Federation
Andrey S. Shirokov, Project Leader, Project Office Subsurface Block
Tyumen
D. V. Grandov
Russian Federation
Dmitry V. Grandov, Chief Manager, Project Office Subsurface Block
Tyumen
S. A. Eremin
Russian Federation
Sergey A. Eremin, Head of New Ventures Subsurface Division
Tyumen
E. N. Zhilin
Russian Federation
Evgeny N. Zhilin, Head of Geology and Drilling Support Section, New Ventures Subsurface Division
Tyumen
References
1. Shapovalov, M. Yu. (2020). Razrabotka metodiki prognoza fil'tratsionno-emkostnykh svoystv produktivnykh plastov nepskoy svity Cibirskoy platformy na osnove kompleksnoy interpretatsii dannykh 3D-seysmorazvedki i geofizicheskikh issledovaniy skvazhin. Diss. … kand. geol.-mineral. nauk. Tyumen, 164 p. (In Russian).
2. Rudkevich, M. Ya., Ozeranskaya, L. S., Chistyakova, N. F., Kornev, V. A., & Maksimov, E. M. (1988). Neftegazonosnye kompleksy Zapadno-Sibirskogo basseyna. Moscow, Nedra Publ., 303 p. (In Russian).
3. Muromtsev, V. S. (1984). Elektrometricheskaya geologiya peschanykh tel - litologicheskikh lovushek nefti i gaza. Moscow, Nedra Publ., 260 p. (In Russian).
4. Yankova, N. V., & Kopysova, I. A. (2015). Features of geoseismic modeling of Russkoye field complex deposit. Nauchno-tekhnicheskiy vestnik OAO "NK "Rosneft'", (3(40)), pp. 20-24. (In Russian).
5. Baryshev, L. A. (2009). Prognozirovanie neftegazovykh zalezhey na osnove fizikogeologicheskikh modeley v seysmogeologicheskikh usloviyakh yuga Sibirskoy platform. Avtoref. diss. kand. geol.-mineral. nauk. Irkutsk, 36 p. (In Russian).
6. Baryshev, L. A., & Baryshev, A. S. (2008). Multiparameter physico-geological model of Verkhnechonskoye gascondensate oil field. Oil and gas geology, (4), pp. 46-54. (In Russian).
7. Baryshev, L. A., Redekon, V. A., & Shekhtman, G. A. (2009). Vozmozhnosti izucheniya terrigennykh kollektorov nazemnoy i skvazhinnoy seysmorazvedkoy v Vostochnoy Sibiri. Tekhnologii sejsmorazvedki, (2), pp. 64-76. (In Russian).
8. Dan'ko, D. A. (2018). Razrabotka printsipov izucheniya netraditsionnykh glinistykh kollektorov na osnove petrouprugogo modelirovaniya i amplitudnoy inversii seysmicheskikh dannykh. Diss. … kand. tekhn. nauk. Moscow, 151 p. (In Russian).
9. Volkhonin, S. V., Avchyan, G. M., Savinskiy, K. A., & Ozerskaya, M. L. (1985). Petrofizicheskaya kharakteristika osadochnogo pokrova neftegazonosnykh provintsiy SSSR. Moscow, Nedra Publ., 193 p. (In Russian).
10. Kobranova, V. N. (1986). Petrofizika. 2nd edition, revised and expanded. Moscow, Nedra Publ., 392 p. (In Russian).
11. Vakhromeev, G. S., Erofeev, L. Ya., Kanaykin, V. S., & Nomokonova, G. G. (1997). Petrofizika. Tomsk, Tomsk University Publ., 462 p. (In Russian).
12. Shorohova, A. P., & Suvorova, I. V. (2017). Implementation of rock-physics modeling with a view to improving efficiency of petrophysical support of seismic data inversion in the terrigenous sediments. Russian Geophysics, (S), pp. 143-151. (In Russian).
13. Kallweit, R. S., & Wood, L. C. (1982). The limits of resolution of zero-phase wavelets. Geophysics, (47), pp. 977-1131. (In Russian). DOI: 10.1190/1.1441367
14. Danko, D. A. (2016). Comparison of deterministic acoustic inversion methods for prediction of the prospective acoustically contrast objects from seismic data. Russian Geophysics, (1), pp. 2-11. (In Russian).
15. Shapovalov, M. Yu., & Khohlov, G. A. (2012). Acoustic inversion in high contrast media: Iterative approach. Geomodel 2012 - 14th Scientific-Practical Conference on the Problems of Integrated Interpretation of Geological and Geophysical Data During Geological Modeling of Hydrocarbons' Deposits, Gelendzhik (In Russian). Available at: https://www.elibrary.ru/item.asp?id=23960950
16. Kashcheev, D. E., Kirnos, D. G., & Gritsenko, A. M. (2008). Sovremennye tekhnologii inversii dannykh seysmorazvedki. Geomodel 2008 - 10th EAGE science and applied research conference on oil and gas geological exploration and development. (In Russian). Available at: https://www.earthdoc.org/content/papers/10.3997/2214-4609.201404377. DOI: 10.3997/2214-4609.201404377
17. Zhukov, A. P., Zhemchugova, V. A., Epov, K. A., & Fedotov, S. L. (2006). Prognozirovanie struktury i svoystv prirodnykh rezervuarov na osnove kompleksnoy interpretatsii seysmicheskikh i skvazhinnykh dannykh. Tekhnologii seysmorazvedki, (1), pp. 69-78. (In Russian)
Review
For citations:
Kopysova I.A., Shirokov A.S., Grandov D.V., Eremin S.A., Zhilin E.N. Evaluating the efficiency of using different variants of background models for inversion calculations. Oil and Gas Studies. 2020;(5):36-52. (In Russ.) https://doi.org/10.31660/0445-0108-2020-5-36-52