Repair-and-renewal operations of pipelines from the data on their maintenance
https://doi.org/10.31660/0445-0108-2020-5-94-103
Abstract
Maintaining of the pipeline system in an operational condition can't be achieved without solving the problem of their protection from internal corrosion as the main factor that leads to numerous accidents. In conditions of limited funding, the creation of scientifically based methods that regulate repair work on difficult areas [1] or those that are not repairable using "classical" methods is a very urgent task. In this way, the use of repair methods without stopping product pumping, in terms of justifying the placement of technological equipment, even more increase the importance of the problem being solved.
Research methods are experimental and theoretical character and based on the analysis and processing of statistical data received during the experimental studies of field objects.
The result of this work was the creation of a methodology that allows determining the order of repair work on pipelines with different degrees of corrosion damage and its speed on different sections of the route [2]. And as a result, reasonable placement of technological equipment along the pipeline route for in-line pipeline repair, without stopping the pumping of the transported product.
About the Authors
E. S. ToropovRussian Federation
Evgeny S. Toropov, Candidate of Engineering, Associate Professor at the Department of Transport and Technology of Oil and Gas Complex
TyumenS. M. Dorofeev
Russian Federation
Sergey M. Dorofeev, Candidate of Engineering, Associate Professor at the Department of Natural Science and General Professional Disciplines
TyumenT. G. Ponomareva
Russian Federation
Tatyana G. Ponomareva, Candidate of Engineering, Associate Professor at the Department of Transportation of Hydrocarbon Resources
TyumenS. Yu. Toropov
Russian Federation
Sergey Yu. Toropov, Doctor of Engineering, Professor at the Department of Transportation of Hydrocarbon Resources
TyumenReferences
1. Lyshenko, L. Z. & Bisyarina, O. M. (1986). Tekhnicheskie sredstva remonta podvodnykh nefteprovodov, Moscow, VNIIOENG Publ., 45 p. (In Russian).
2. Legezin, N. E., Glazov, N. P., Kessel'man, G. S., & Kutovaya, A. A. (1973). Zashchita ot korrozii promyslovykh sooruzheniy v gazovoy i neftedobyvayushchey promyshlennosti. Moscow, Nedra Publ., 168 p. (In Russian).
3. Bobylev, L. M., & Bobylev, A. L. (1999). Sovremennoe oborudovanie dlya bestransheynogo remonta truboprovodov. ROBT, (2), pp. 17-21. (In Russian).
4. Bobylev, L. M., & Bobylev, A. L. (1996). Oborudovanie dlya bestransheynoy prokladki kommunikatsiy. ROBT, (1). (In Russian).
5. Toropov, S. Yu., Dorofeev, S. M., Kachur, V. M., & Ponomareva, T. G. (2005). Opredelenie polozheniya remontnogo oborudovaniya vo vnutrenney polosti truboprovoda. Izvestiya vysshikh uchebnykh zavedeniy. Neft' i gaz, (4), pp. 67-71. (In Russian).
6. Toropov, S. Yu., Dorofeev, S. M., & Prokop'ev, I. V. (2005). Oborudovanie dlya avariynogo remonta gazonefteprovodov. Trudy mezhdunarodnoy nauchno-tekhnicheskoy konferentsii. Chast' II. Tyumen, pp. 170-172. (In Russian).
7. ANSVASME B31G Manual for Determining the Remaining Strength of Corroded Pipelines. (In English). Available at: https://law.resource.org/pub/us/cfr/ibr/002/asme.b31g.1991.pdf
8. СЕРА Stress Corrosion Cracking Recommended Practices (2007). 2nd edition. 205 p. (In English).
9. Jones, D. (1997). Inspection: the key to a reliable future. Part 1. Pipes & Pipelines international, 42 (2), pp. 32-43. (In English). Available at: https://pascal-francis.inist.fr/vibad/index.php?action=getRecord Detail&idt=2667713
10. Marichev, F. N., Getmanskiy, M. D., Teterina, O. P., Vaver, V. I., Yarmizin, V. G., Eygenson, S. A., & Red'ko, V. P. (1981). Vnutrennyaya korroziya i zashchita truboprovodov na neftyanykh mestorozhdeniyakh Zapadnoy Sibiri. Seriya "Korroziya i zashchita v neftegazovoy promyshlennosti", (8). Moscow, VNIIOENG Publ., 44 p. (In Russian).
11. Kiefner, J. F., & Vieth, P. H. (1989). A modified criterion for evaluating the remaining strength of corroded pipe. (In English). Available at: https://www.osti.gov/biblio/7181509
12. Abdullin, I. G., Gareev, A. G., & Mostovoy, A. V. (1997). Korrozionnomekhanicheskaya stoykost' neftegazovykh truboprovodnykh sistem: diagnostika i prognozirovanie dolgovechnosti. Ufa, Gilem Publ., 177 p. (In Russian).
13. Dai, Y., Rödig, M., & Altes, J. (1991). Calculation of the stress intensity factor for a partial circumferentially cracked tube loaded in bending by using the shell line-spring model. Fatigue & Fracture of Engineering Materials and Structures, 14(1), pp. 11-23. (In English). DOI: 10.1111/j.1460-2695.1991.tb00639.x
14. Levitin, Yu. I. (1997). Bestransheynyy remont mestnykh povrezhdeniy podzemnykh truboprovodov. ROBT, (8), pp. 37-39. (In Russian).
15. Abdullin, I. G., Davydov, S. N., Khudyakov, M. A., Marichev, F. N., & Gataullin, Sh. G. (1984). Mekhanizm kanavochnogo razrusheniya nizhney obrazuyushchey neftesbornykh kollektorov. Neftyanoe khozyaystvo, (3), pp. 51-53.
16. Gonik, A. A., & Kornilov, G. G. (1999). Prichiny i mekhanizm lokal'noy korrozii vnutrenney poverkhnosti neftesbornykh truboprovodov na mestorozhdeniyakh Zapadnoy Sibiri. Zashchita metallov, 35(1), pp. 83-87. (In Russian).
17. Kagan, Ya. M., Kuz'micheva, O. P., & Kushnir, V. N. (1981). Vliyanie rezhima techeniya sredy na razvitie korrozionnykh protsessov v promyslovykh nefteprovodakh. RNTS Korroziya i zashchita v neftegazovoy promyshlennosti, (5), pp. 7-10. (In Russian).
18. Larichev, F. N., Tegerana, O. P., & Sokolov, V. F. (1979). Rol' faktora trassy v razvitii protsessa vnutrenney korrozii neftesbornykh truboprovodov. RNTS Korroziya i zashchita v neftegazovoy promyshlennosti, (11). (In Russian).
Review
For citations:
Toropov E.S., Dorofeev S.M., Ponomareva T.G., Toropov S.Yu. Repair-and-renewal operations of pipelines from the data on their maintenance. Oil and Gas Studies. 2020;(5):94-103. (In Russ.) https://doi.org/10.31660/0445-0108-2020-5-94-103