Preview

Oil and Gas Studies

Advanced search

Thermoelectric model of the Earth's magnetic field

https://doi.org/10.31660/0445-0108-2021-2-39-52

Abstract

A variant of the thermoelectric model of the Earth's dipole magnetic field is considered. It is based on geothermoelectric currents present in the planet's core. The currents cyclically change their direction, which leads over time either to warming on the Earth, if their movement is directed towards the Earth's crust, or to cooling, when moving towards the inner core. With each change in the direction of movement of the thermal currents, the poles of the Earth's magnetic field are inverted simultaneously. The inversion process is instantaneous (on the scale of planetary time) and is not the result of a gradual reversal on the 180° Earth's magnetic axis. At the moment of inversions of thermal currents in the core, the total geomagnetic field decreases to the level of 4.6∙10-6 T, which is constantly supported by thermal currents of semi-conducting rocks of the lower mantle. The considered version of the thermoelectric model of the Earth's magnetic field may be promising for studying the magnetic fields of planets in the Solar system.

About the Authors

A. N. Dmitriev
Industrial University of Tyumen
Russian Federation

Arkadiy N. Dmitriev, Doctor of Geology and Mineralogy, Professor at the Department of Applied Geophysics

Tyumen



Yu. V. Pakharukov
Industrial University of Tyumen
Russian Federation

Yury V. Pakharukov, Doctor of Physics and Mathematics, Professor at the Department of Physics, Monitoring and Diagnostic Methods

Tyumen



References

1. Rikitake, T. (1966). Electromagnetism and the Earth's interior. Amsterdam - London - New York, Elsevier Publishing Company, 308 p. (In English).

2. Bourgoin, M., Odier, P., Pinton, J.-F., & Ricard, Y. (2004). An iterative study of time independent induction effects in magnetohydrodynamics. Physics of Fluids, 16(7), pp. 2529-2547. (In English). DOI: 10.1063/1.1739401

3. Giesecke, A., Nore, C., Stefani, F., Gerbeth, G., Léorat, J., Luddens, F., & Guermond, J. (2010). Electromagnetic induction in non-uniform domains. Geophysical & Astrophysical Fluid Dynamics, 104(5-6), pp. 505-529. (In English). DOI: 10.1080/03091929.2010.507202

4. Gailitis, A., Lielausis, O., Platacis, E., Gerbeth, G., & Stefani, F. (2003). The Riga dynamo experiment. Surveys in Geophysics, 24, pp. 247-267. (In English). DOI: 10.1023/A:1024851818821

5. Verhille, G., Plihon, N., Bourgoin, M., Odier, P., & Pinton, J. F. (2010). Laboratory Dynamo Experiments. Space Science Reviews,152(1-4), pp. 543-564. (In English). DOI: 10.1007/s11214-009-9546-1

6. Sokolov, D. D., Stepanov, R. A., & Frick, P. G. (2014). Dynamos: from an astrophysical model to laboratory experiments. Uspekhi Fizicheskih Nauk, 184(3), pp. 292-311. (In English). DOI: 10.3367/UFNr.0184.201403g.0313

7. Alfven, H. (1977). Electric currents in cosmic plasma. Reviews of Geophysics, 15(3), pp. 271-284. (In English). DOI: 10.1029/RG015i003p0027

8. Zeldovich, Ya. B., & Ruzmaikin, A. A. (1987). The hydromagnetic dynamo as the source of planetary, solar, and galactic magnetism. Uspekhi Fizicheskih Nauk, 152(6), pp. 263-284. (In Russian). DOI: 10.3367/ufnr.0152.198706c.0263

9. Vocadlo, L., Alfe, D., Price, G. D., & Gillan, M. J. (2000). First principles calculations on the diffusivity and viscosity of liquid Fe-S at experimentally accessible conditions // Physics of the Earth and Planetary Interiors, 120(1-2), pp. 145-152. (In English). DOI: 10.1016/s0031-9201(00)00151-5

10. Mineev, V. N., & Funtikov, A. I. (2004). Viscosity measurements on metal melts at high pressure and viscosity calculations in relation to the Earth's core. Uspekhi Fizicheskih Nauk, 174(7), pp. 727-742. (In English).

11. Funtikov, A. I. (2004). Ob izmereniyakh vyazkosti zhidkikh zheleza i ego soedineniy s seroy pri vysokikh davleniyakh i sostoyanii yadra Zemli. Fizika ekstremal'nykh sostoyaniy veshchestva - 2004. Chernogolovka, pp. 18-19. (In Russian).

12. Brazhkin, V. V., & Lyapin, A. G. (2000). Universal viscosity growth in metallic melts at megabar pressures: the vitreous state of the Earth's inner core. Uspekhi Fizicheskih Nauk, 170(5), pp. 535-551. (In Russian). DOI: 10.3367/ufnr.0170.200005c.0535

13. Smylie, D. E., Brazhkin, V. V., & Palmer, A. (2009). Direct observations of the viscosity of Earth's outer core and extrapolation of measurements of the viscosity of liquid iron. Physics-Uspekhi, 52(1), pp. 79-92. (In English).

14. Burmin, V. Yu. (2004). P wave velocities in the mantle. Physics of the Earth. Izvestiya. Physics of the Solid Earth, 40(8), pp. 641-646. (In English).

15. Burmin, V. Yu. (2008). Vyazkost' zemnogo yadra po seysmicheskim dannym. Doklady akademii nauk, 418(6), pp. 825-828. (In Russian).

16. Pasynok, S. L. (1997). Svobodnye kolebaniya vnutrennego yadra Zemli dlya neravnovesnoy modeli Zemli. Vestnik Moskovskogo universiteta. Seriya 3. Fizika, Astronomiya, (4), pp. 43-46. (In Russian).

17. Dolginov, A. Z. (1987). Origin of the magnetic fields of the earth and celestial bodies. Soviet Physics Uspekhi, 30(6), pp. 475-493. (In English). DOI: 10.1070/PU1987v030n06ABEH002851

18. Arsen'ev, S. A. (2015). Teoreticheskoe modelirovanie glavnogo magnitnogo polya Zemli i planet. Aktual'nye problemy gumanitarnykh i estestvennykh nauk, (4-2), pp. 313-321. (In Russian).

19. Elsasser, W. M. (1939). On the origin of the Earth's magnetic field. Physical Review, 55(5), pp. 489-498. (In English). DOI: 10.1103/PhysRev.55.489

20. Vestine, E. H. (1954). The Earth's core. Trans. Am. geophys. union, (35), pp. 63-72. (In English).

21. Runcorn, S. K. (1954). The Earth's core. Transactions, American Geophysical Union, 35(1), pp. 49-63. (In English). DOI: 10.1029/TR035i001p00049

22. Dmitriev, A. N. (2016). A New Look On the Nature of the Earth's Magnetic Field. IOP Conference Series: Earth and Environmental Science, 44(2), pp. [1‒5]. (In English). DOI: 10.1088/1755-1315/44/2/022001

23. Dmitriev, A. N. (1980). O vozmozhnoy prichine sushchestvovaniya dvukh polyusov u prirodnykh polyarizovannykh provodnikov. Razvedochnaya geofizika, (88), pp. 125-129. (In Russian).

24. Dmitriev, A. N. (2007). Geologo-geofizicheskie osnovy poiskov elektricheski polyarizovannykh ob''ektov - neftyanykh i rudnykh zalezhey (na primere Zapadnoy Sibiri). Tyumen, Tyumen State University Publ., 226 p. (In Russian).

25. Dmitriev, A. N. (2012). Forward and inverse self-potential modeling: a new approach. Russian Geology and Geophysics, 53(6), pp. 611-622. (In English).

26. Kalashnikov, S. G. (1977). Elektrichestvo. Moscow, Nauka Publ., 592 p. (In Russian).

27. Savel'ev, I. V. (1970). Kurs obshchey fiziki. Tom II. Elektrichestvo i magnetizm. Volny. Optika. Moscow, Nauka Publ., 336 p. (In Russian).

28. Zharkov, V. N. (1983). Vnutrennee stroenie Zemli i planet Moscow, Nauka Publ., 416 p. (In Russian).

29. Magnitskiy, V. A. (2006). Vnutrennee stroenie i fizika Zemli. Moscow, Nauka Publ., 389 p. (In Russian).

30. Kuznetsov, V. V. (2011). Fizika Zemli. Novosibirsk, 842 p. (In Russian).

31. Uffen, R. J. (1952). A method of estimating the melting point gradient in the Earth's mantle. Transactions, American Geophysical Union, 33(6), pp. 893-896. DOI: 10.1029/TR033i006p00893

32. Tozer, D. C. (1959). The electrical properties of the Earth's interior. Physics and Chemistry of the Earth, 3, pp. 414-436. (In English). DOI: 10.1016/0079-1946(59)90010-2

33. Anzellini, S., Dewaele, A., Mezouar, M., Loubeyre, P., & Morard, G. (2013). Melting of Iron at Earth's Inner Core Boundary Based on Fast X-ray Diffraction. Science, 340(6131), pp. 464-466. (In English). DOI: 10.1126/science.1233514

34. Loper, D. E. (1984). Structure of the core and lower mantle. Advances in Geophysics, 26, pp. 1-34. (In English). DOI: 10.1016/S0065-2687(08)60243-5

35. Lifshits, I. M., Azbel, M. Ya., & Kaganov, M. I. (1971). Elektronnaya teoriya metallov. Moskow, Nauka Publ., 416 p. (In Russian).

36. Matveev, A. N. (1983). Elektrichestvo i magnetism. Moscow, Vysshaya shkola Publ., 464 p. (In Russian).

37. Tyushev, A. N. (2011). Kurs lektsiy po fizike. Chast' 5. Kvantovaya fizika. Novosibirsk, SGGA Publ., 167 p. (In Russian).

38. Pavlov, P. V., & Khokhlov, A. F. (2000). Fizika tverdogo tela. Moscow, Vysshaya shkola Publ., 494 p.

39. Zhuravlev, V. A. (2002). Lektsii po kvantovoy teorii metallov. Moscow, Institut komp'yuternykh issledovaniy Publ., 240 p. (In Russian).

40. Kuznetsov, V. V. (2008). Vvedenie v fiziku goryachey Zemli. Petropavlovsk-Kamchatsky, 366 p. (In Russian).

41. Bronshtein, V. A. (1977). Planeta Mars. Moscow, Nauka Publ., 96 p. (In Russian).


Review

For citations:


Dmitriev A.N., Pakharukov Yu.V. Thermoelectric model of the Earth's magnetic field. Oil and Gas Studies. 2021;(2):39-52. (In Russ.) https://doi.org/10.31660/0445-0108-2021-2-39-52

Views: 460


ISSN 0445-0108 (Print)