Preview

Oil and Gas Studies

Advanced search

Laboratory studies of the oil-displacing capacity of multifunctional chemical composition based on surfactants

https://doi.org/10.31660/0445-0108-2021-2-136-146

Abstract

The development of deposits of hard-to-recover reserves, including heavy and high-viscosity oil, dictates the need to search for new and improve existing enhanced oil recovery methods. One of the well-known methods of increasing oil recovery is the use of reservoir treatments with chemical compositions containing surfactants. A new multifunctional chemical oil-displacing composition (MFC) capable of operating in a wide temperature range has been created at the Institute of Petroleum Chemistry, Siberian Branch of the Russian Academy of Sciences. The oil-displacing composition of MFC based on a surfactant, an adduct of inorganic acid, polyol, ammonium and aluminum salts, and urea is designed to increase the oil recovery of fields at both early and late stages of development.

The article presents the results of laboratory tests of the developed MFC for enhanced oil recovery. Experiments were carried out on the setup to study the filtration characteristics of models of heterogeneous formation.

As a result of experiments, it was found that the use of the MFC composition leads to a significant increase in the oil displacement coefficient at both low and high temperatures. The high oil-displacing capacity of MFC at low temperature is caused by the interaction of inorganic acid and polyol, which are part of the composition, with the formation of a strong acid that reacts with the carbonate rock of the reservoir. At high temperature, due to the processes of hydrolysis of urea and aluminum salt, MFC evolves into an alkaline composition with the formation of an alkaline buffer system (pH = 9), which is optimal for oil displacement purposes.

About the Authors

V. V. Kozlov
Institute of Petroleum Chemistry, Siberian Branch of the Russian Academy of Sciences; National Research Tomsk State University
Russian Federation

Vladimir V. Kozlov, Candidate of Chemistry, Senior Researcher at the Laboratory of Colloidal Oil Chemistry, Institute of Petroleum Chemistry, Siberian Branch of the Russian Academy of Sciences, Senior Lecturer at the Department of Macromolecular Compounds and Petrochemistry, National Research Tomsk State University

Tomsk



L. K. Altunina
Institute of Petroleum Chemistry, Siberian Branch of the Russian Academy of Sciences; National Research Tomsk State University
Russian Federation

Lyubov K. Altunina, Doctor of Engineering, Honoured Worker of Science of the Russian Federation, Head of the Laboratory of Colloidal Oil Chemistry, Institute of Petroleum Chemistry, Siberian Branch of the Russian Academy of Sciences, Professor at the Department of Macromolecular Compounds and Petrochemistry, National Research Tomsk State University

Tomsk



L. A. Stasyeva
Institute of Petroleum Chemistry, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Lyubov A. Stasyeva, Researcher at the Laboratory of Colloidal Oil Chemistry

Tomsk



U. V. Chernova
Institute of Petroleum Chemistry, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Uliana V. Chernova, Engineer at the Laboratory of Colloidal Oil Chemistry

Tomsk



M. R. Sholidodov
Institute of Petroleum Chemistry, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Mekhrob R. Sholidodov, Senior Engineer at the Laboratory of Colloidal Oil Chemistry

Tomsk



References

1. Yakutseni, V. P., Petrova, Yu. Eh., & Sukhanov, A. A. (2007). Dinamika doli otnositel'nogo soderzhaniya trudnoizvlekaemykh zapasov nefti v obshchem balanse. Petroleum Geology - Theoretical and Applied Studies, (2), pp. 1-11. (In Russian).

2. Tarasyuk, V. M. (2014). Heavy crude oils and natural bitumens: problems and efficiency increase in exploration and field development. Bereginya. 777. Sova: Obshchestvo. Politika. Ekonomika, (2(21), pp. 121-125. (In Russian).

3. Barkov, S., Grunis, E., & Khavkin, A. (2013). Neftedobycha: zapasy i KIN. (In Russian). Available at: http://neftegaz.ru/science/view/932/

4. Polishchuk, Yu. M., & Yashchenko, G. I. (2005). Vysokovyazkie nefti: analiz prostranstvennykh i vremennykh izmeneniy fiziko-khimicheskikh svoystv. Neftegazovoye delo, (1). (In Russian). Available at: http://ogbus.ru/article/view/vysokovyazkie-nefti-analiz-prostranstvennyx-ivremennyx-izmenenij-fiziko-ximicheskix-svojstv

5. Maksutov, R. A., Orlov, G. I., & Osipov, A. V. (2005). Osvoenie zapasov vysokovyazkikh neftey v Rossii. Tekhnologii toplivno-energeticheskogo kompleksa, (6), pp. 46-58. (In Russian).

6. Аltunina, L. K., Kuvshinov, V. A., Staseva, L. A., Kuvshinov, I. V., & Kozlov, V. V. (2016). Oil-displacing surfactant composition with controlled viscosity for enhanced oil recovery from heavy oil deposits. Georesursy, 18(4-1), pp. 281-288. (In English). DOI: 10.18599/grs.18.4.5

7. Altunina, L. K., & Kuvshinov, V. A. (2007). Uvelichenie nefteotdachi zalezhey vysokovyazkikh neftey fiziko-khimicheskimi metodami. Tekhnologii toplivno-energeticheskogo kompleksa, (1(32)), рp. 46-52. (In Russian).

8. Altunina, L. K., & Kuvshinov, V. A. (2007). Physicochemical methods for enhancing oil recovery from oil fields, Russian Chemical Reviews, 76(10), pp. 971-987. (In English). DOI: 10.1070/RC2007v076n10ABEH003723

9. Alvarado, V., & Manrique, E. (2010). Enhanced Oil Recovery: An Update Review. Energies, 3(9), pp. 1529-1575. (In English). DOI: 10.3390/en3091529

10. Altunina, L., Kuvshinov, V., & Kuvshinov, I. (2010). Kompozitsii PAV dlya effektivnogo paroteplovogo vozdeystviya na plast. Oil & Gas Journal Russia, (6), pp. 68-75. (In Russian).

11. Gerlach, B., Dugonjic-Bilic, F., Neuber, M., & Alkouh, A. (2019). Best Surfactant for EOR Polymer Injectivity. SPE Kuwait Oil & Gas Show and Conference. Mishref, Kuwait. (In English). Available at: https://doi.org/10.2118/198097-ms

12. Thomas, S. (2008). Enhanced Oil Recovery - An Overview. Oil & Gas Science and Technology, 63(1), pр. 9-19. (In English).

13. Olajire, A. A. (2014). Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: prospects and challenges. Energy, 77, pp. 963-982. (In English). DOI 10.1016/j.energy.2014.09.005.

14. Adams, W. T., & Schievelbein, V. H. (1987). Surfactant Flooding Carbonate Reservoirs. SPE Reservoir Engineering, 2(04), pp. 619-626. (In English). DOI: 10.2118/12686-PA

15. Aguilar, F., López, I., Prieto, C., Montes, J., Lázaro, J., Barrio, I.,… Rodriguez, B. (2016). Alkyl Aryl Sulfonates Surfactants For EOR: Scale Up From Lab To Pilot. SPE Improved Oil Recovery Conference. Tulsa, Oklahoma, USA, April, 11-13. (In English). Available at: https://doi.org/10.2118/179653-MS

16. Hirasaki, G. J., Miller, C. A., & Puerto, M. (2011). Recent Advances in Surfactant EOR. SPE Journal, 16(04), pp. 889-907. (In English). DOI: 10.2118/115386-PA

17. Raffa, P., Broekhuis, A. A., & Picchioni, F. (2016). Polymeric surfactants for enhanced oil recovery: A review. Journal of Petroleum Science and Engineering, 145, pp. 723-733. (In English). DOI: 10.1016/j.petrol.2016.07.007

18. Raffa, P., Wever, D. A. Z., Picchioni, F., & Broekhuis, A. A. (2015). Polymeric Surfactants: Synthesis, Properties, and Links to Applications. Chemical Reviews, 115(16), pp. 8504-8563. (In English). DOI: 10.1021/cr500129h

19. Gazizov, A. A. (2002). Uvelichenie nefteotdachi neodnorodnykh plastov na pozdney stadii razrabotki. Moscow, Nedra Publ., 639 p. (In Russian).

20. Altunina, L. K., & Kuvshinov, V. A. (1995). Uvelichenie nefteotdachi plastov kompozitsiyami PAV. Novosibirsk, Nauka, Sibirskaya izdatel'skaya firma Publ., 196 p. (In Russian).

21. Altunina, L. K., Kuvshinov, V. A., Ursegov, S. O, & Chertenkov, M. V. (2011). Synergism of physicochemical and thermal methods intended to improve oil recovery from high-viscosity oil pools. 16th European Symposium on Improved Oil Recovery. Cambridge, UK. (In English). Available at: https://doi.org/10.3997/2214-4609.201404753

22. Altunina, L. K., & Kuvshinov, V. A. (2013). Physicochemical methods for enhanced oil recovery. Vestnik of Saint-Petersburg University. Physics and chemistry, (2), pp. 46-76. (In Russian).

23. Altunina, L. K., Kuvshinov, V. A. & Kuvshinov, I. V. (2011). Zalezhi s trudnoizvlekaemymi zapasami. Kompleksnaya tekhnologiya uvelicheniya nefteotdachi. Oil & Gas Journal Russia, (6), pр. 110-116. (In Russian).

24. Altunina, L. K., & Kuvshinov, V. A. (2001). Fiziko-khimicheskie aspekty tekhnologiy uvelicheniya nefteotdachi (obzor). Khimiya v interesakh ustoychivogo razvitiya, (9), pp. 331-334. (In Russian).

25. Altunina, L. K., Kuvshinov, V. A., Kuvshinov, I. V., Staseva, L. A., Kozlov, V. V., Chertenkov, M. V.,… Karmanov, A. Yu. (2018). Uvelichenie nefteotdachi mestorozhdeniy vysokovyazkoy nefti khimicheski evolyutsioniruyushchimi kompozitsiyami. Materialy nauchnoprakticheskoy konferentsii "Aktual'nye zadachi neftepererabatyvayushchego i neftekhimicheskogo kompleksa", Moscow, November 21-23. Moscow, VNIPIneft' OAO Publ., pp. 12-14. (In Russian).


Review

For citations:


Kozlov V.V., Altunina L.K., Stasyeva L.A., Chernova U.V., Sholidodov M.R. Laboratory studies of the oil-displacing capacity of multifunctional chemical composition based on surfactants. Oil and Gas Studies. 2021;(2):136-146. (In Russ.) https://doi.org/10.31660/0445-0108-2021-2-136-146

Views: 376


ISSN 0445-0108 (Print)