Preview

Oil and Gas Studies

Advanced search

Research of actual information on well casing using machine learning and neural networks

https://doi.org/10.31660/0445-0108-2021-3-108-119

Abstract

In domestic and world practice, despite the measures applied and developed to improve the quality of well casing, there is a problem of leaky structures in almost 50 % of completed wells. The study of actual data using classical methods of statistical analysis (regression and variance analyses) doesn't allow us to model the process with sufficient accuracy that requires the development of a new approach to the study of the attachment process. It is proposed to use the methods of machine learning and neural network modeling to identify the most important parameters and their synergistic impact on the target variables that affect the quality of well casing. The formulas necessary for translating the numerical values of the results of acoustic and gamma-gamma cementometry into categorical variables to improve the quality of probabilistic models are determined. A database consisting of 93 parameters for 934 wells of fields located in Western Siberia has been formed. The analysis of fastening of production columns of horizontal wells of four stratigraphic arches is carried out, the most weighty variables and regularities of their influence on target indicators are established. Recommendations are formulated to improve the quality of well casing by correcting the effects of acoustic and gamma-gamma logging on the results.

About the Authors

D. V. Shalyapin
Industrial University of Tyumen; KogalymNIPIneft Branch of LUKOIL-Engineering LLC
Russian Federation

Denis V. Shalyapin, Postgraduate, Industrial University of Tyumen, Engineer of 2nd grade of the Well Construction Monitoring Department, KogalymNIPIneft Branch of LUKOIL-Engineering LLC

Tyumen



D. L. Bakirov
Industrial University of Tyumen; KogalymNIPIneft Branch of LUKOIL-Engineering LLC
Russian Federation

Daniyar L. Bakirov, Candidate of Engineering, Acting Head of the Basic Department of KogalymNIPIneft Branch of LUKOILEngineering LLC in Tyumen, Assistant Director of Branch, KogalymNIPIneft Branch of LUKOIL-Engineering LLC

Tyumen



M. M. Fattahov
KogalymNIPIneft Branch of LUKOIL-Engineering LLC
Russian Federation

Marsel M. Fattahov, Head of the Department of Drilling and Cement Muds

Tyumen



A. D. Shalyapina
Industrial University of Tyumen
Russian Federation

Adelya D. Shalyapina, Postgraduate, Assistant at the Department of Drilling Oil and Gas Wells

Tyumen



V. G. Kuznetsov
Industrial University of Tyumen
Russian Federation

Vladimir G. Kuznetsov, Doctor of Engineering, Professor at the Department of Drilling Oil and Gas Wells

Tyumen



References

1. Gorbacheva, O. A. (2012). Razrabotka i vnedrenie metodov kontrolya i issledovaniy skvazhin s mezhkolonnymi davleniyami na Astrakhanskom GKM. Avtoref. diss. ... kand. tekhn. nauk. Ufa, 26 p. (In Russian).

2. Bakirov, D. L., Burdyga, V. A., Fattakhov, M. M., & Gritsay, G. N. (2019). To the problem of the assessment of wells cementing quality. Oilfield Engineering, (9), pp. 10-13. (In Russian). DOI: 10.30713/0207-2351-2019-9(609)-10-13

3. Bakirov, D. L., Fattakhov, M. M., Bondarenko, L. S., Malyutin, D. V., & Bagaev, P. A. (2014). Technology implementation efficiency of construction of multilateral wells with horizontal ending at the fields of "LUKOIL-THE WESTERN SIBERIA, LTD.". Geology, Geophysics and Development of Oil and Gas Fields, (10), pp. 42-45. (In Russian).

4. Malyutin, D. V., Bakirov, D. L., Babushkin, E. V., & Svyatukhov, D. S. (2016). Geomechanical modeling to solve the problem of wells construction in LLC "LUKOIL-WESTERN SIBERIA" (on the example of Vategansky deposit). Geologiya, geofizika i razrabotka neftyanyh i gazovyh mestorozhdeniy, (11), pp. 23-26. (In Russian).

5. Bakirov, D. L., Mazur, G. V., Babushkin, E. V., Bagaev, P. A., & Ovchinnikov, V. P. (2019). Improving technology of horizontal sidetracking in complicated geological-technical conditions. Oil Industry, (8), pp. 40-43. (In Russian). DOI: 10.24887/0028-2448-2019-8-40-43

6. Bakirov, D. L., Burdyga, V. A., Fattakhov, M. M., Gritsay, G. N., & Antonov, V. V. (2020). Increase of a well cementing stability to dynamic influence. Oilfield Engineering, (1), pp. 65-70. (In Russian). DOI: 10.30713/0207-2351-2020-1(613)-65-70

7. Samsonenko, N. V. (2020). Ways to improve well attachment quality. Bulatovskie chteniya - Readings name of A. I. Bulatov, (3), pp. 331-335. (In Russian).

8. Belousov, G. A., Skorikov, B. M. & Maygurov, I. V. (2007). Osobennosti krepleniya naklonno napravlennykh i gorizontal'nykh stvolov skvazhin. Construction of Oil and Gas Wells on Land and Sea, (4), pp. 47-50. (In Russian).

9. Nikolaev, N. I. & Kozhevnikov, E. V. (2014). Enhancing the cementing quality of the well with horizontal profile. Vestnik PNIPU. Geologiya. Neftegazovoe i gornoe delo, 3(11), pp. 29-37. (In Russian).

10. Klyuchnikov, N., Zaytsev, A., Gruzdev, A., Ovchinnikov, G., Antipova, K., Ismailova, L., & Koroteev, D. (2019). Data-driven model for the identification of the rock type at a drilling bit. Journal of Petroleum Science and Engineering, (178), pp. 506-516. (In Russian). DOI: 10.1016/j.petrol.2019.03.041

11. Cayeux, E., Daireaux, B., Dvergsnes, E. W. W., & Florence, F. (2014). Toward Drilling Automation: On the Necessity of Using Sensors That Relate to Physical Models. SPE Drilling & Completion, 29(02), pp. 236-255. (In English). DOI: 10.2118/163440-PA

12. Chen, T. & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785-794. (In English). DOI: 10.1145/2939672.2939785

13. Downton, G. C. (2012). Challenges of Modeling Drilling Systems For the Purposes of Automation and Control. IFAC Proceedings Volumes, 45(8), pp. 201-210. (In English). DOI 10.3182/20120531-2-NO-4020.00054.

14. Detournay, E. & Defourny, P. (1992). A phenomenological model for the drilling action of drag bits. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 29(1), pp. 13-23. (In English). DOI: 10.1016/0148-9062(92)91041-3

15. Shalyapin, D. V., Bakirov, D. L., Fattakhov, M. M., Shalyapina, A. D., Melekhov, A. V., Sherbakov, A. V., & Kuznetsov, V. G. (2020). The applying of machine learning methods to improve the quality of well casing. Oil and Gas Studies, (5), pp. 81-93. (In Russian). DOI: 10.31660/0445-0108-2020-5-81-93

16. Shalyapin, D. V., Bakirova, A. D., & Kuznetsov, V. G. (2020). Perspektivy razrabotki matematicheskoy modeli dlya povysheniya kachestva krepleniya skvazhin na mestorozhdeniyakh Zapadnoy Sibiri. Sostoyanie, tendentsii i problemy razvitiya neftegazovogo potentsiala Zapadnoy Sibiri: materialy dokladov Mezhdunarodnoy akademicheskoy konferentsii, pp. 142-146. (In Russian).

17. Shalyapin, D. V. & Bakirova, A. D. (2020). Razrabotka tekhnologicheskikh resheniy po podgotovke stvola skvazhiny k tsementirovaniyu i povysheniyu kachestva krepleniya s ispol'zovaniem iskusstvennogo intellekta dlya Pyakyakhinskogo mestorozhdeniya. Problemy geologii i osvoeniya nedr: trudy XXIV Mezhdunarodnogo simpoziuma imeni akademika M. A. Usova studentov i molodykh uchenykh, posvyashchennogo 75-letiyu Pobedy v Velikoy Otechestvennoy voyne, pp. 436-437. (In Russian).

18. Shalyapin, D. V. Babushkin, E. V. & Shalyapina, A. D. (2020). Primenenie metodov matematicheskogo analiza dlya povysheniya kachestva krepleniya skvazhin. Neft' i gaz: tekhnologii i innovatsii: materialy Natsional'noy nauchno-prakticheskoy konferentsii. V 3 tomakh, pp. 107-110. (In Russian).

19. Shalyapin, D. V., Shcherbakov, A. V. & Bakirova, A. D. (2020). Razrabotka dlya Pyakyakhinskogo mestorozhdeniya tekhnologicheskikh resheniy po podgotovke stvola skvazhiny k tsementirovaniyu i povysheniyu kachestva krepleniya s ispol'zovaniem iskusstvennogo intellekta. Bulatovskie chteniya - Readings name of A.I. Bulatov, 3, pp. 372-376. (In Russian).

20. Shalyapin, D. V., Bakirova, A. D., & Kuznetsov, V. G. (2020). Issledovanie i razrabotka tekhniko-tekhnologicheskikh resheniy po stroitel'stvu skvazhin v usloviyakh Bol'shekhetskoy vpadiny. Novye tekhnologii — neftegazovomu regionu : materialy Mezhdunarodnoy nauchnoprakticheskoy konferentsii studentov, aspirantov i molodykh uchenykh: v 2 tomakh. Tom 1, pp. 53-55. (In Russian).


Review

For citations:


Shalyapin D.V., Bakirov D.L., Fattahov M.M., Shalyapina A.D., Kuznetsov V.G. Research of actual information on well casing using machine learning and neural networks. Oil and Gas Studies. 2021;(3):108-119. (In Russ.) https://doi.org/10.31660/0445-0108-2021-3-108-119

Views: 390


ISSN 0445-0108 (Print)