Experimental study of the transmission of energy of a microwave electromagnetic field into the oil environment employing a submersible emitter
https://doi.org/10.31660/0445-0108-2021-3-120-129
Abstract
The supply of heat to oil media pumped by pipeline transport systems is one of the main problems in the oil industry. The article describes a method for supplying heat to oil-containing media using the energy of an electromagnetic field. The possibility of releasing surfaces in contact with oil sludge under the influence of electromagnetic fields has been shown by experiment. We describe the design and parameters of a biconical horn radiator of a microwave electromagnetic field operating at a frequency of 2 450 MHz. A method for generating energy and transmitting it to the emitter by means of a coaxial cable is shown. Testing the emitter in oil placed in an optically transparent and radio-tight double-walled tank is presented. The design of the stand allows us to safely examine the thermal process using a thermal imager. The installation made it possible to heat 7 liters of oil at 15 °C in 12 minutes.
About the Authors
A. F. SekachevRussian Federation
Andrei F. Sekachev, Senior Lecturer
Omsk
V. V. Shalai
Russian Federation
Viktor V. Shalai, Doctor of Engineering, Professor, Honored Worker of Higher School of the Russian Federation, Head of the Department of Oil and Gas Business, Standardization and Metrology, President of Omsk State Technical University
Omsk
Yu. D. Zemenkov
Russian Federation
Yuri D. Zemenkov, Doctor of Engineering, Professor, Head of the Department of Transportation of Hydrocarbon Resources
Tyumen
A. F. Fitzner
Russian Federation
Artyom F. Fitzner, Leading Specialist
Nyagan
A. E. Yakovlev
Russian Federation
Aleksey E. Yakovlev, Engineer
Tyumen
References
1. Mao, F., Han, X., Huang, Q., Yan, J., & Chi, Y. (2016). Effect of frequency on ultrasoundassisted centrifugal dewatering of petroleum sludge. Drying Technology, 34(16), pp. 1948-1956. (In English). DOI: 10.1080/07373937.2016.1144611
2. Xu, N., Wang, W., Han, P., & Lu, X. (2009). Effects of ultrasound on oily sludge deoiling. Journal of Hazardous Materials, 171(1-3), pp. 914-917. (In English). DOI: 10.1016/j.jhazmat.2009.06.091
3. Duan, M., Wang, X., Fang, S., Zhao, B., Li, C., & Xiong, Y. (2018). Treatment of Daqing oily sludge by thermochemical cleaning method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 554, pp. 272-278. (In English). DOI: 10.1016/j.colsurfa.2018.06.046
4. Abass, O. K., Fang, F., Zhuo, M., & Zhang, K. (2018). Integrated interrogation of causes of membrane fouling in a pilot-scale anoxic-oxic membrane bioreactor treating oil refinery wastewater. Science of The Total Environment, 642, pp. 77-89. (In English). DOI: 10.1016/j.scitotenv.2018.06.049
5. Liu, C., Zhang, Y., Sun, S., Huang, L., Yu, L., Liu, X.,… Zhang, Z. (2018). Oil recovery from tank bottom sludge using rhamnolipids. Journal of Petroleum Science and Engineering, 170, pp. 14-20. (In English). DOI: 10.1016/j.petrol.2018.06.031
6. Taheri-Shakib, J., Shekarifard, A., & Naderi, H. (2018). Experimental investigation of comparing electromagnetic and conventional heating effects on the unconventional oil (heavy oil) properties: Based on heating time and upgrading. Fuel, 228, pp. 243-253. (In English). DOI: 10.1016/j.fuel.2018.04.141
7. Kovaleva, L. A., Minnigalimov, R. R., & Zinnatullin, R. R. (2008). Ob effektivnosti utilizatsii neftyanykh shlamov vysokochastotnym elektromagnitnym polem. Oilfield Engineering, (1). (In Russian). Available at: http://ogbus.ru/article/view/ob-effektivnosti-utilizacii-neftyanyxshlamov-vysokochastotnym-elektromagnitnym-polem
8. Sayakhov, F. L., Kovaleva, L. A, Galimbekov, A. D., & Khaydar, A. M. (2003). Elektrofizika neftegazovykh sistem. Ufa, Bashkir State University Publ., 190 p. (In Russian).
9. Sekachev. A. F., Kismereshkin, V. P., Yakovlev, A. E., Ficner, A. F., & Matveev, A. V. (2017). Razrabotka SVCH modulya dlya razzhizheniya nefteshlama. Truboprovodnyy transport uglevodorodov : materialy Vserossiyskoy nauchno-prakticheskoy konferentsii s mezhdunarodnym uchastiem, Omsk, September, 28-29, 2017. Omsk, Omsk State Technical University Publ., pp. 125-128. (In Russian).
10. Abdullina, V. A., & Fatykhov, M. A. (2012). Fusion of firm depositions in pipelines by the electromagnetic field moving source. Oilfield Engineering, (6), pp. 60-68. (In Russian). Available at: http://ogbus.ru/article/view/rasplavlenie-tverdyx-otlozhenij-v-truboprovodax-dvizhushhimsya-istochnikom-elektromagnitnogo-polya
11. Balakirev, V. A., Sotnikov, G. V., Tkach, Yu. V., & Yatsenko, T. Yu. (2001). Nagrev i plavlenie asfal'toparafinovykh probok v oborudovanii neftyanykh skvazhin pri periodicheskom rezhime raboty vysokochastotnogo istochnika elektromagnitnogo izlucheniya. Journal of Applied Mechanics and Technical Physics, 42(4(248)), p. 136-144. (In Russian).
12. Balakirev, V. A., Sotnikov, G. V., Tkach, Yu. V., & Yatsenko, T. Yu. (1998). VCh metod ustraneniya parafinovykh probok v oborudovanii neftyanykh skvazhin i nefteprovodakh. Elektromagnitnye yavleniya, 4, pp. 552-560. (In Russian).
13. Shiryaeva, R. N., Sayakhov, F. L., Kudasheva, F. K., Kovaleva, L. A., & Gimaev, R. N. (2001). Regulation of the Rheological Properties of Paraffin-Base Crudes with A High-Frequency Electromagnetic Field. Chemistry and Technology of Fuels and Oils, 37(6), pp. 407-409. (In Russian). DOI: 10.1023/A:1014262610098
14. Morozov, N. N. (2013). Razrabotka SVCH-tekhnologii zashchity truboprovoda ot zakuporok pri transportirovke vyazkikh zhidkostey. Vestnik of MSTU, 16(1), pp. 135-136. (In Russian).
15. Kovaleva, L. A., Zinnatullin, R. R., & Shaykhislamov, R. R. (2010). K issledovaniyu vliyaniya temperatury obrabotki na konechnuyu vyazkost' neftyanykh sred. High Temperature, 48(5), pp. 796-798. (In Russian).
16. Leontyev, A. Yu., Poletaeva, O. Yu., Babayev, E. R., & Mamedova, P. Sh. (2018). Influence of microwave exposure on the change of the viscosity of highly viscous heavy oil. Oil & Gas Chemistry, (2), pp. 25-27. (In Russian).
17. Rachevsky, B., & Tsao, B. (2015). Extra-heavy crude oil is an alternative to conventional oil. Transport na al'ternativnom toplive, 6(48)), pp. 40-45. (In Russian).
18. Galanov, E. K., Yakovenko, E. K., Filatov, M. K., & Kytin, Yu. A. (2006). Primenenie SVCH- i IK-izlucheniya dlya povysheniya effektivnosti sliva tyazhelykh neftey. Proceedings of Petersburg Transport University, (2(7)), pp. 118-123. (In Russian).
19. Morozov, G. A., Anfinogentov, V. I., Morozov, O. G., Nasybullin, A. R., Samigullin, R. R., & Smirnov, S. V. (2016). Methods and tools for control and monitoring of microwave heating processes in the oil industry. 26th Mezhdunarodnaya Krymskaya konferentsiya " SVCH-tekhnika i telekommunikatsionnye tekhnologii " (KryMiKo'2016) (September, 4-10, 2016, Sevastopol). Sevastopol, Sevastopol State University Publ., pp. 59-69. (In Russian).
20. Yudina, V. O., & Arkhangelskyi, Yu. S. (2019). Using the microwave energy for heating the fluid flow. Voprosy elektrotekhnologii, (1(22)), pp. 22-34. (In Russian).
21. Arkhangelskyi, Yu. S., Yudina, V. O. (2019). Designing a continuous UHF of electrothermic installation for heating fluids at laminar flow. Voprosy elektrotekhnologii, (2(23)), pp. 5-12. (In Russian).
22. Kovaleva, L. A., Zinnatullin, R. R., Valeev, M. D., Minnigalimov, R. Z., & Fassahov, R. H. (2019). Laboratory investigations of the heating of high-viscosity oil in pipelines by a high frequency electromagnetic field. Neftyanoe Khozyaystvo - Oil Industry, (2), pp. 82-85. (In Russian). DOI: 10.24887/0028-2448-2019-2-82-85
Review
For citations:
Sekachev A.F., Shalai V.V., Zemenkov Yu.D., Fitzner A.F., Yakovlev A.E. Experimental study of the transmission of energy of a microwave electromagnetic field into the oil environment employing a submersible emitter. Oil and Gas Studies. 2021;(3):120-129. (In Russ.) https://doi.org/10.31660/0445-0108-2021-3-120-129