Optimization of the heat exchange system of the gasoline fraction hydrotreating unit
https://doi.org/10.31660/0445-0108-2022-1-81-95
Abstract
This article deals with the main trends of improving the energy efficiency of production facilities for processing hydrocarbon materials on the example of a catalytic reforming unit. By analyzing the heat-technological scheme of the hydrotreatment section, the potential for energy saving has been identified and options for upgrading the heat exchange system of the stabilization unit to increase the use of secondary energy resources and minimize heat losses have been proposed. Based on thermal and economic calculations, a more efficient option has been chosen with an arrangement of multistage heat exchange and use of distillate product for preheating raw materials, which allows more fully using the potential of its own streams. The proposed optimization of the heat exchange system of the stabilization unit of the hydrotreating plant by involving the distillate product in the heat exchange will provide an increase in the degree of heat recovery with a reduction in heat losses and electricity consumption, a reduction in the number of heat exchange equipment units and a more rational use of them.
About the Authors
L. V. TaranovaRussian Federation
Lyubov V. Taranova, Candidate of Engineering, Associate Professor at the Department of Oil and Gas Processing
Tyumen
G. P. Klevtsov
Russian Federation
Georgii P. Klevtsov, Student
Tyumen
A. G. Mozyrev
Russian Federation
Andrey G. Mozyrev, Candidate of En-gineering, Associate Professor at the Department of Oil and Gas Processing
Tyumen
References
1. Usmanov, M. R. Podvintsev, I. B., & Gimaletdinov, R. R. (2018). Povyshenie proizvoditel'nosti i effektivnosti ekspluatatsii proizvodstvennykh aktivov: tekhnologicheskaya podderzhka predpriyatiy neftepererabotki, neftekhimii i gazopererabotki. St. Petersburg, Piter Publ., 299 p. (In Russian).
2. Rudin, M. G., Somov, V. E., & Fomin, A. S. (2004). Karmannyy spravochnik neftepererabotchika. 2nd edition, revised and expanded. Moscow, TSNIITEneftekhim Publ., 332 p. (In Russian).
3. Abrosimov, A. A. (2002). Ekologiya pererabotki uglevodorodnykh system. Mosсоw, Khimiya Publ., 2002, 608 p. (In Russian).
4. Lakhov, Yu. A. (2014). Opredelenie pokazateley energoeffektivnosti neftepererabatyvayushchego predpriyatiya. Aktual'nye aspekty sovremennoy nauki: cbornik materialov VI mezhdunarodnoy nauchno-prakticheskoy konferentsii, Lipetsk, November, 28, 2014. Lipetsk, RaDushi LLC, pp. 152-164. (In Russian).
5. Shperuk, L. M. (2018). Pinch analysis as a tool for achieving energy efficiency. Uspekhi v khimii i khimicheskoy tekhnologii, 32(8(204)), pp. 12-14. (In Russian).
6. Yushkova, E. A. & Lebedev, V. A. (2020). Heat exchange system analysis in the refining process. Bulletin of south Ural State University. Series: Power Engineering, 20(1), pp. 5-11. (In Russian). DOI: 10.14529/power200101
7. Gogoleva, L. V. (2013). Solomon technique use necessity for assessment of gas and petrochemical complex enterprises operating efficiency. Uspekhi v khimii i khimicheskoy tekhnologii, 27(9(149)), pp. 103-107. (In Russian).
8. Petkova, P. G. (2016). Ispol'zovanie indeksov Solomon i Nel'sona dlya analiza effektivnosti neftepererabatyvayushchikh predpriyatiy. Problemy geologii i osvoeniya nedr: trudy XX Mezhdunarodnogo simpoziuma studentov i molodykh uchenykh imeni akademika M. A. Usova. Tomsk, Tomsk Polytechnic University Publ., pp. 1065-1066. (In Russian).
9. Bulatov, I. S. (2012). Pinch-tekhnologiya. Energosberezhenie v promyshlennosti. St. Petersburg, Strata Publ., 140 p. (In Russian).
10. Zhulaev, S. V. (2012). The pinch-analysis and optimization of industrial facilities. Neftegazovoye delo, (2), рр. 392-398. (In Russian). Available at: http://ogbus.ru/article/view/pinch-analiz-i-optimizaciya-promyshlennyx-obektov
11. Konovalov, V. I., Kudra, Т., Pakhomov, A. N., & Orlov, A. Yu. (2008). Presentday analytical approaches to energysaving. Integrated approach. Pinch analysis. Onion model. Transactions TSTU, 14(3), pp. 560-578. (In Russian).
12. Tovazhnyanskii, L. L., Kapustenko, P.A., Ul'ev, L.M., Boldyrev, S.A., Arsen'еva, O. P., & Tarnovskii, M. V. (2009). Thermal process integration in the AVDU A12/2 crude distillation unit during winter operation. Theoretical Foundations of Chemical Engineering. (43(6)), pp. 906-917. (In English).
13. Rybkin, V., Zhu, F., & Shihan, B. P. (2009). Optimizatsiya energozatrat tekhnologicheskikh protsessov. Oil and Gas Territory, (8), pp. 80-84. (In Russian).
14. Hidiyatullin, A. S., Gareeva, I. Yu., Rudnev, N. A., & Abyzgildin, A. Yu. (2016). Pinch analysis scheme of primary oil processing. Open Journal Systems, (3), рр. 183-197. (In Russian).
15. Koshcheeva, A. A., Taranova, L. V., & Mozyrev, A. G. (2019). Efficiency increasing methods used for hydrocarbon processing facilities AIP Conference proceedings. Physics, Technologies and Innovation (PTI-2019). Vol. 2174. (In English). Available at: https://doi.org/10.1063/1.5134408
16. Mirkin, A. Z., Yaitskikh, G. S., Syunyaeva, G. A., Yaitskikh, V. G. (2014). Povyshenie energoeffektivnosti neftepererabatyvayushchikh zavodov. Khimicheskaya tekhnika, (5), pp. 38-41. (In Russian).
17. Yasaveev, Kh. N., Laptev, A. G., & Farakhov, M. I. (2004). Modernizatsiya ustanovok pererabotki uglevodorodnykh smesey. Kazan, Kazan State Power Engineering University Publ., 305 p. (In Russian).
18. Lebedev, Yu. N. (2010). Modernization of crude oil refining units using powersaving technologies. Chemistry and Technology of Fuels and Oils, 46(4), pp. 217-224. (In English).
19. Kozhemyakin, M. Yu., & Cherkasova, E. I. (2015). Gidroochistka dizel'nogo topliva. Vestnik Tekhnologicheskogo universiteta, 18(23), pp. 28-30. (In Russian).
20. Akhmetov, S. A. (2002). Tekhnologiya glubokoy pererabotki nefti i gaza. Ufa, Gilem Publ., 672 p. (In Russian).
21. Landau, M. V., Nefedov, B. K., & Alekseenko, L. N. (1985). Katalizatory na osnove molibdena i vol'frama dlya protsessa gidropererabotki neftyanogo syr'ya. Moscow, TSNIITEneftekhim Publ., 80 p. (In Russian).
22. Taranova, L. V. (2017). Sistemnyy analiz protsessov khimicheskoy tekhnologii i neftegazopererabotki. Tyumen, Industrial University of Tyumen Publ., 96 p. (In Russian).
23. Kuznetsov, O. A. (2015). Modelirovanie ustanovki pererabotki nefti v Aspen HYSYS V8. Moscow - Berlin, Direkt-Media Publ., 133 p. (In Russian).
Review
For citations:
Taranova L.V., Klevtsov G.P., Mozyrev A.G. Optimization of the heat exchange system of the gasoline fraction hydrotreating unit. Oil and Gas Studies. 2022;(1):81-95. (In Russ.) https://doi.org/10.31660/0445-0108-2022-1-81-95