Solutions of the natural electric potential for skew and polyhedral polarized bodies
https://doi.org/10.31660/0445-0108-2022-2-19-36
Abstract
Solutions for finding the natural electric potential from polarized oblique-angled (4-sided with complete asymmetry) and polyhedral electron-conducting bodies found in nature are performed. An oblique body is a layer with different angles of inclination of its upper edge and side faces, i.e. a body that has complete asymmetry. A theoretical search of various combinations of the angles of inclination of the faces and the lengths of these faces allows you to select an anomaly of the electric potential for tetrahedral bodies of any complexity. A polyhedral body is an 8-sided one that approximates a sphere fairly accurately at a distance of one or more internal radii from its surface. Solutions for polarized oblique-angled (4-sided) and polyhedral electronconducting bodies are tested on examples of interpretation of anomalies of the natural electric potential observed over real ore objects. As a result, the solutions obtained expand the possibilities of the natural electric field method in solving inversion problems and, thereby, increase its efficiency.
About the Author
A. N. DmitrievRussian Federation
Arkadiy N. Dmitriev, Doctor of Geology and Mineralogy, Professor at the Department of Applied Geophysics
Tyumen
References
1. Dmitriev, A. N. (2012). Forward and Inverse Self-potential Modeling: a New Approach. Russian Geology and Geophysics, 53(6), pp. 611-622. (In Russian).
2. Semenov, A. S. (1967). Plotnost' toka i summarnyy tok polyarizovannykh rudnykh tel. Uchenye zapiski Leningradskogo gosudarstvennogo universiteta imeni A. A. Zhdanova; No. 333. Fizicheskiy i geologicheskiy fakul'tety. Seriya fizicheskikh i geologicheskikh nauk; Voprosy geofiziki.Vyp. 17. Leningrad, Leningrad State University named after A. A. Zhdanov Publ., 1967, pp. 113-117. (In Russian).
3. Semenov, A. S. (1980). Elektrorazvedka metodom estestvennogo elektricheskogo polya. Leningrad, Nedra Publ., 446 p. (In Russian).
4. Dmitriev, A. N. (2007). Geologo-geofizicheskie osnovy poiskov elektricheski polyarizovannykh ob''ektov - neftyanykh i rudnykh zalezhey (na primere Zapadnoy Sibiri). Tyumen, Tyumen State University Publ., 226 p. (In Russian).
5. Sato, M., & Mooney, H. M. (1960). The Electrochemical Mechanism of Sulphide Self-potentials. Geophisics, 25(1), pp. 77-326. (In English). DOI: 10.1190/1.1438689
6. Mirolyubov, N. N., Kostenko, M. V., Levinshteyn, M. L., & Tichodeev, N. N. (1963). Metody rascheta elektrostaticheskikh poley. Moscow, Higher School Рubl., 415 p. (In Russian).
7. Yüngül, S. (1950). Interpretation of spontaneous polarization anomalies caused by spheroidal ore bodies. Geophysics, 15(2), pp. 237-246. (In English). DOI: 10.1190/1.1437597
8. El-Araby, H. (2004). A new method for complete quantitative interpretation of selfpotential anomalies. Journal of Applied Geophysics, 55(3-4), рр. 211-224. (In English). DOI: 10.1016/J.JAPPGEO.2003.11.002
9. De Witte, L. (1948). A new Method of Interpretation of Self-Potential Field Data. Geophysics, 13(4), pp. 529-624. (In English). DOI: 10.1190/1.1437436
10. Bhattacharyya, B. B & Roy, N. (1981). A note on the use of a nomogram for selfpotential anomalies. Geophysical Prospecting, 29(1), pp. 102-107. (In English). DOI: 10.1111/j.1365-2478.1981.tb01013.x
11. Skianis, G. A., Papadopoulos, T. D. & Vaiopoulos, D. A. (2001). A study of the selfpotential field produced by a polarised inclined sheet in an electrically homogeneous and transversely anisotropic ground. Bulletin of the Geological Society of Greece, 34(4), pp. 1343-1350. (In English). DOI: 10.12681/bgsg.17226
12. Paul, M. K. (1965). Direct interpretation of self-potential anomalies caused by inclined sheets of infinite horizontal extensions. Geophysics, 30(3), pp. 339-449. (In English). DOI: 10.1190/1.1439596
13. Meiser, P. (1962). A method of quantitative interpretation of selfpotential measurements. Geophysical Prospecting, 10(2), pp. 203-218. (In English). DOI: 10.1111/j.1365-2478.1962.tb02009.x
14. Murty, B. & Haricharan, P. (1985). Nomograms for the complete interpretation of spontaneous potential profiles over sheet like and cylindrical 2D structures. Geophysics, (50), pp. 1127-1135. (In English). DOI: 10.1190/1.1441986
15. Abdelrahman, E. M., El-Araby, T. M., & Essa, K. S. (2009). Shape and depth determinations from second moving average residual self-potential anomalies. Journal of Geophysics and Engineering, 6(1), pp. 43-52. (In English). DOI: 10.1088/1742-2132/6/1/005
16. Abdelrahman, E. M, El-Araby, H. M., Hassaneen, A. G., & Hafez, M. A. (2003). New methods for shape and depth determinations from SP data. Geophysics, 68(4), pp. 1202-1210. (In English). DOI: 10.1190/1.1598112
17. Oliveti, I., & Cardarelli, E. (2016). 2D approach for solving self-potential problems : modeling and numerical simulations. GNGTS, Sessione 3.3, pp. 610-613.
18. Oliveti, I., & Cardarelli, E. (2017). 2D approach for modelling self-potential anomalies : application to synthetic and real data. Bollettino di Geofisica Teorica ed Applicata, 58(4), pp. 415-430. (In English). DOI: 10.4430/bgta0198
19. Khasanov, D. I. (2009). Vvedenie v elektrorazvedku. Kazan, Kazan Federal University Publ., 75 p. (In Russian).
20. Muslimov, R. H. (Ed.). (2007). Oil and Gas Potential of the Republic of Tatarstan. Geology and Development of Oil Fields. Vol. 1. Kazan, Publishing House "FENG" of the Academy of Sciences of the Republic of Tatarstan, 316 p. (In Russian).
Review
For citations:
Dmitriev A.N. Solutions of the natural electric potential for skew and polyhedral polarized bodies. Oil and Gas Studies. 2022;(2):19-36. (In Russ.) https://doi.org/10.31660/0445-0108-2022-2-19-36