Application of geoinformation systems in sounding the ecological and economic network of the urban environment in the northern territories
https://doi.org/10.31660/0445-0108-2023-1-97-107
Abstract
Global climate change and its impact on the environment is one of the main problems of the 21st century. In the Arctic zone, where considerable oil and gas reserves are located, warming is 2-3 times faster than the world average. Against the backdrop of increased Arctic warming, thermal pollution has created permanent urban heat islands, where urban temperatures are 1-2 degrees Celsius higher than in surrounding areas. The aim of the article was a geoinformation assessment of climatic and anthropogenic characteristics in various zones of Tyumen (recreational zones (parks and reservoirs) and the zone of urban highways) in the summer of 2021. The Earth program was used in the studies, statistical processing of the results was carried out using the IBM SPSS Statistics 21 software. It has been found that a circadian diurnal rhythm is observed both in recreational areas (parks and reservoirs) and in the area of urban highways (wind speed, temperature and relative humidity, concentration of CO, CO2, SO2, NO2) in the summer of 2021. The revealed correlation relationships between climatic characteristics and anthropogenic pollutants and aerosols indicate that global climate change is associated with the deterioration of the ecological situation in the urban environment and doesn't depend on the landscape features of the city.
About the Authors
N. L. MamaevaRussian Federation
Natali L. Mamaeva, Senior Researcher; Senior Lecturer
Tyumen
S. A. Petrov
Russian Federation
Sergei A. Petrov, Doctor of Medical Sciences, Professor, Chief Researcher
Tyumen
References
1. Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J.,… Midgley, P. M. (2013). (Eds) IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press, 1535 p. (In English). Available at: https://www.ipcc.ch/report/ar5/wg1/
2. Lenssen, N. J. L., Schmidt, G. A., Hansen, J. E., Menne, M. J., Persin, A., Ruedy, R.,… Zyss, D. (2019). Improvements in the GISTEMP Uncertainty Model. Journal of Geophysical Research: Atmospheres, 124(12), pp. 6307-6326. (In English). DOI: 10.1029/2018jd029522
3. Paptsov, A. G., & Shelamova, N. A. (2018). Global'naya prodovol'stvennaya bezopasnost' v usloviyakh klimaticheskikh izmeneniy. Moscow, the Russian Academy of Sciences Publ., 132 p. (In Russian).
4. Shindell, D. (2007). Local and remote contributions to Arctic warming. Geophysical Research Letters, 34(14). (In English). Available at: https://doi.org/10.1029/2007GL030221
5. Stuecker, M. F., Bitz, C. M., Armour, K. C., Proistosescu, C., Kang, S. M., Xie, S.-P.,… Jin, F.-F. (2018). Polar amplification dominated by local forcing and feedbacks. Nature Climate Change, (8), pp. 1076-1081. (In English). DOI: 10.1038/s41558-018-0339-y
6. Shindell, D., & Faluvegi, G. (2009). Climate response to regional radiative forcing during the twentieth century. Nature Geoscience, 2(4), pp. 294-300. (In English). DOI: 10.1038/ngeo473
7. Ren, L., Yang, Y., Wang, H., Zhang, R., Wang, P. & Liao, H. (2020). Source attribution of Arctic black carbon and sulfate aerosols and associated Arctic surface warming during 1980-2018. Atmospheric Chemistry and Physics, 20(14), pp. 9067-9085. (In English). DOI: 10.5194/acp-20-9067-2020
8. Ivanov, V. V., Alekseev, V. A., Alekseeva, T. A., Koldunov, N. V., Repina, I. A., & Smirnov, A. V. (2013). Arkticheskiy ledyanoy pokrov stanovitsya sezonnym? Issledovanie Zemli iz kosmosa, (4), pp. 50-65. (In English). DOI: 10.7868/S0205961413040076
9. Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Arden Pope III, C.,… Spadaro, J. V. (2018). Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proceedings of the National Academy of Sciences, 115(38), рр. 9592-9597. (In English). DOI: 10.1073/pnas.1803222115
10. Lelieveld, J., Klingmüller, K., Pozzer, A., Pöschl, U., Fnais, M., Daiber, A., & Münzel, T. (2019). Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. European Heart Journal, 40(20), pp. 1590-1596. (In English). DOI: 10.1093/eurheartj/ehz135
11. Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., De Angelo, B. J.,… Zender, C. S. (2013). Bounding the role of black carbon in the climate system: a scientific assessment. Journal of Geophysical Research: Atmospheres, (118), рр. 5380-5552. (In English). DOI: 10.1002/jgrd.50171
12. Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H., & Klimont, Z. (2014). A technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research: Atmospheres, (109). (In English). Available at: https://doi.org/10.1029/2003jd003697
13. Jacobson, M. Z. (2001). Strong radiative heating due to the mixing state of black carbon in the atmospheric aerosols. Nature, 409, рр. 695-698. (In English).
14. Latysheva, I. V., Loshchenko, K. A., & Shahaeva, E. V. (2013). Circulation conditions of sudden stratospheric warming in the Northern Hemisphere in the 21st century. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya "Nauki o zemle", 6(1), pp. 106-121. (In Russian).
15. Klimenko, V. V., & Astrina, N. A. (2006). Dokumental'nye svidetel'stva sil'nykh kolebaniy klimata Rossiyskoy Arktiki v XV-XX vv. Istoriya i sovremennost', (1), pp. 179-217. (In Russian).
16. Klimenko, V. V., Matskovsky, V. V., & Dalmann, D. (2013). Comprehensive reconstruction of the temperature of the Russian Arctic over the last two millennia. Arctic: ecology and economy, 4(12), pp. 84-95. (In Russian).
17. Petrov, S., Mamaeva, N., & Narushko, M. (2017). Urban development of heat island territories and the health of the northern indigenous population. MATEC Web of Conferences, (105). (In English). Available at: https://doi.org/10.1051/matecconf/201710601035
18. Akent'eva, E. M., Aleksandrov, E. I., Alekseev, G. V., Anisimov, O. A., Balonishnikova, Zh. A., Bulygina, O. N.,… Shkol'nik, I. M. (2017). Doklad o klimaticheskikh riskakh na territorii Rossiyskoy Federatsii. St. Petersburg, Voeikov Main Geophysical Observatory Publ., 106 p. (In Russian).
19. Petrov, S. A. & Mamaeva, N. L. (2021). Ispol'zovanie sputnikovykh tekhnologiy dlya otsenki klimaticheskikh trendov v akvatorii Arktiki. Sovremennye issledovaniya transformatsii kriosfery i voprosy geotekhnicheskoy bezopasnosti sooruzheniy v Arktike: sbornik trudov konferentsii. Salekhard, November, 03-12, 2021. Salekhard, pp. 339-342. (In Russian). DOI: 10.7868/9785604610848091
20. Im, U., Tsigaridis, K., Faluvegi, G., Langen, P. L., French, J. P., Mahmood, R.,… Brandt, J. (2021). Present and future aerosol impacts on Arctic climate change in the GISS-E2.1 Earth system model. Atmospheric Chemistry and Physics, 21(13), pp. 10413-10438. (In English). DOI: 10.5194/acp-21-10413-2021
21. Breider, T. J., Mickley, L. J., Jacob, D. J., Ge, C., Wang, J., Sulprizio, M. P., … & Hopke, Ph. K. (2017). Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980. Journal of Geophysical Research: Atmospheres, 122(6), pp. 3573-3594. (In English). DOI: 10.1002/2016JD025321
Review
For citations:
Mamaeva N.L., Petrov S.A. Application of geoinformation systems in sounding the ecological and economic network of the urban environment in the northern territories. Oil and Gas Studies. 2023;(1):97-107. (In Russ.) https://doi.org/10.31660/0445-0108-2023-1-97-107