Preview

Oil and Gas Studies

Advanced search

Estimating recoverable oil reserves using integral displacement characteristics based on probabilistic methodology

https://doi.org/10.31660/0445-0108-2021-2-78-88

Abstract

Estimation of recoverable oil reserves is an actual problem in field development. One way to estimate reserves is to use the characteristics of oil displacement by water. This method, in contrast to hydrodynamic modeling, doesn't take a long computational time and doesn't require information on the geological and filtration properties of the objects under consideration.

The article discusses the use of integral displacement characteristics based on a probabilistic method for assessing potentially recoverable oil reserves. We describe an algorithm for estimating reserves by this method. In the course of the comparative analysis, the efficiency of the method was demonstrated depending on the watercut at the end of the approximation interval. As a result, with a watercut of less than 90 %, a better forecast was found than in the classical application of the characteristics of oil displacement by water.

About the Authors

V. S. Shumko
Industrial University of Tyumen; "Design Bureau "Technologies of effective field development" LLC
Russian Federation

Vladislav S. Shumko, Industrial University of Tyumen, Engineer, "Design Bureau "Technologies of effective field development" LLC

Tyumen



E. I. Mamchistova
Industrial University of Tyumen
Russian Federation

Elena I. Mamchistova, Candidate of Engineering, Associate Professor, Professor at the Department of Development and Exploitation of Oil and Gas Fields

Tyumen



S. S. Kuzovlev
"Design Bureau "Technologies of effective field development" LLC
Russian Federation

Sergey S. Kuzovlev, Head of the Department of Oil and Gas Field Development

Tyumen



References

1. Khodanovich, D. A., & Malkosh, R. V. (2017). Rapid method for oil-field development assessing. Oil Industry, (6), pp. 84-87. (In Russian). DOI: 10.24887/0028-2448-2017-6-84-87

2. Naugolnov, M. V., Gabitova, S. I., Murtazin, R. I., Klimov, V. Yu., Grishko, F. V., & Edelman, I. Ya. (2020). Evaluation and classification of proved and undeveloped OOIP by reservoir complexity index (in case of Salym brown oil fields). PROneft. Professionals about oil, (1(15)), pp. 42-46. (In Russian). DOI: 10.24887/2587-7399-2020-1-42-46

3. Akramov, B. Sh., Naubeev, T. H., Sapashov, I. Ya., Sanetullаеv, E. E., & Eshmuratov, A. B. (2016). Forecasting of indicators of development according to characteristics of replacement of oil by water. Universum: tekhnicheskie nauki, (7(28)). (In Russian). Available at: http://7universum.com/ru/tech/archive/item/3413

4. Paryani, M., Ahmadi, M., Awoleke, O., & Hanks, C. (2018). Decline curve analysis: a comparative study of proposed models using improved residual functions. Journal of petroleum & environmental biotechnology, (9(1)), pp. [1-8]. (In English). DOI: 10.4172/2157-7463.1000362

5. Darwis, M., Ruchjana, B. N., & Permadi, A. K. (2009). Robust decline curve analysis. Journal of the Indonesian Mathematical Society, 15(2), pp. 105-111. (In English). DOI: 10.22342/jims.15.2.50.105-111

6. Nalivkin, V. D., Belonin, M. D., Lazarev, V. S., & Svechkov, G. P. (1981). Metodologiya prognoza zapasov nefti i gaza: dostizheniya i perspektivy. Energiya i toplivo, (3), pp. 96-101. (In Russian).

7. Hudson, E. J., & Neuse, S. H. (1985). Cutting through the mystery of reserve estimates. Oil and Gas Journal, 83(12), pp. 103-106. (In English).

8. Hudson, E. J. & Neuse, S. H. (1985). Depletion stage determines most effective methods for reserve-estimate integrity. Oil & Gas Journal, 83(13), pp. 80-90. (In English).

9. Sokolov, S. V. (2016). Mathematical prediction model for base oil production with account of uncertainties based on the method of displacement characteristics. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 2(1), pp. 82-91. (In Russian). DOI: 10.21684/2411-7978-2016-2-1-82-91

10. Sokolov, S. V. (2014). Modifikatsiya kharakteristik vytesneniya dlya kratkosrochnogo prognoza dobychi nefti i otsenki effekta ot realizatsii programmy geologo-tekhnicheskikh meropriyatiy. Materialy mezhdunarodnoy nauchno-tekhnicheskoy konferentsii, November, 17-21. Khanty-Mansiysk, pp. 284-288. (In Russian).

11. Nazarenko, M. Yu, & Zolotukhin, A. B. (2020). Application of machine learning for probabilistic production forecasting and ultimately recoverable reserves estimation. Oil industry, (9), pp. 109-113. (In Russian). DOI: 10.24887/0028-2448-2020-9-109-113

12. Kazakov, A. A. (2003). Metodicheskoe obespechenie edinykh podkhodov otsenki effektivnosti metodov PNP. Tekhnologii toplivno-energeticheskogo kompleksa, (2), pp. 47-53. (In Russian).

13. Spivey, J. P., Gatens, J. M., Semmelbeck, M. E., & Lee, W. J. (1992). Integral Type Curves for Advanced Decline Curve Analysis. SPE Mid-Continent Gas Symposium (April, 13-14, 1992). Amarillo, Texas, p. 91. (In English). DOI: 10.2118/24301-MS

14. Kazakov, A. A. (2020). Metody kharakteristik vytesneniya nefti vodoy. Moscow, Nedra Publ., 176 p.

15. Shumko, V. S., & Mamchistova, E. I. (2020). Ispol'zovanie kharakteristik vytesneniya dlya otsenki tekhnologicheskikh pokazateley pri bazovom variante razrabotki. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii studentov, aspirantov i molodykh uchenykh "Novye tekhnologii - neftegazovomu regionu" (May, 20-21). Tyumen, pp. 221-224. (In Russian).

16. Shumko, V. S., Mamchistova, E. I., & Kuzovlev, S. S. (2020). Ispol'zovanie integral'nykh kharakteristik vytesneniya na osnove veroyatnostnoy metodiki dlya otsenki izvlekaemykh zapasov nefti pri bazovom variante razrabotki. Materialy Natsional'noy nauchno-prakticheskoy konferentsii "Neft' i gaz: tekhnologii i innovatsii" (November, 19-20): v 3 tomakh. Tyumen, Industrial University of Tyumen, pp. 182-184. (In Russian).

17. Fedorenko, R. P. (1978). Priblizhennoe reshenie zadach optimal'nogo upravleniya. Mos-cow, Nauka Publ., 488 p. (In Russian).

18. Shumko, V. S., & Mamchistova, E. I. (2020). Primenenie veroyatnostnogo podkhoda dlya otsenki potentsial'no izvlekaemykh zapasov. Materialy natsional'noy nauchno-tekhnicheskoy konferentsii (December, 7). Tyumen, pp. 144-147. (In Russian).

19. Кhanipov, M. N., Nasybullin, A. V., & Sattarov, Rav. Z. (2016). Probabilistic estimate of displaced oil reserves based on oil displacement by water characteristics using statistic methods. Oil Industry, (1), pp. 37-39. (In Russian). DOI: 10.24887/0028-2448-2017-6-37-39

20. Ruchkin, A. A., & Levagin, S. A. (2016). Veroyatnostnyy prognoz izvlekaemykh zapasov po kharakteristikam vytesneniya. Materialy mezhdunarodnoy nauchno-tekhnicheskoy konferentsii (November, 14-18). Khanty-Mansiysk, pp. 393-401. (In Russian).

21. Ruchkin, A. A., & Guseva, D. N. (2016). New approach to the assessment of recoverable reserves by displacement characteristics. Oilfield Engineering, (4), pp. 43-47. (In Russian).


Review

For citations:


Shumko V.S., Mamchistova E.I., Kuzovlev S.S. Estimating recoverable oil reserves using integral displacement characteristics based on probabilistic methodology. Oil and Gas Studies. 2021;(2):78-88. (In Russ.) https://doi.org/10.31660/0445-0108-2021-2-78-88

Views: 876


ISSN 0445-0108 (Print)