Simulation modeling of non-stationary thermophysical processes when monitoring the reliability of main oil pipelines in the Arctic
https://doi.org/10.31660/0445-0108-2021-2-89-103
Abstract
The use of modern complexes for calculating the designed pipeline systems and for predicting their behavior for a period of more than ten years is necessary in modern conditions of the constantly developing hydrocarbon market and the development of new northern territories for greater oil production. It will allow avoiding accidents and environmental disasters that have become more frequent in recent years due to the deterioration of existing equipment. The article presents a method for monitoring the main reliability parameters of underground oil pipelines, taking into account changes in soil foundations, mainly in the Arctic zone of the Russian Federation. An oil pipeline section is considered as an object for monitoring of heat engineering processes and their influence on the reliability of the system. We describe the main results of calculations of the oil pipeline section and simulate changes in soil foundations. We used a multilayer pipe with polyurethane foam insulation and coating for the calculations to improve the reliability characteristics. This pipe has showed the best results of modeling in comparison with the design pipe.
About the Authors
V. V. GolikRussian Federation
Vasily V. Golik, Senior Lecturer at the Department of Transportation of Hydrocarbon Resources
Tyumen
Yu. D. Zemenkov
Russian Federation
Yuri D. Zemenkov, Doctor of Engineering, Professor, Head of the Department of Transportation of Hydrocarbon Resources
Tyumen
M. Yu. Zemenkova
Russian Federation
Maria Yu. Zemenkova, Candidate of Engineering, Associate Professor at the Department of Transportation of Hydrocarbon Resources
Tyumen
E. L. Chizhevskaya
Russian Federation
Elena L. Chizhevskaya, Candidate of Economics, Associate Professor at the Department of Transportation of Hydrocarbon Resources
Tyumen
K. S. Voronin
Russian Federation
Konstantin S. Voronin, Candidate of Engineering, Associate Professor at the Department of Transportation of Hydrocarbon Resources
Tyumen
References
1. Golik, V. V., Zemenkov, Yu. D., & Gladenko, A. A. (2020). Monitoring teplofizicheskikh parametrov magistral'nykh trubopro-vodov v slozhnykh inzhenerno-geologicheskikh usloviyakh arkticheskoy zony RF. Tekhnika i tekhnologiya neftekhimicheskogo i neftegazovogo proizvodstva. Materialy 10-y Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii "Tekhnika i tekhnologiya neftekhimicheskogo i neftegazovogo proizvodstva" (Omsk, February, 26-29). Omsk, Omsk State Technical University Publ., pp. 230-231. (In Russian).
2. Moiseev, B. V., Kushakova, N. P., Nalobin, N. V. Moiseev, B. V., Kushakova, N. P., & Nalobin, N. V. (2002). Mathematical modeling of non-stationary temperature interaction of heat pipelines and seasonally freezing soils. Composite building materials: Collection of scientific papers of the international scientific-practical conference. Penza, PenzGASA Publ., pp. 261-264. (In Russian).
3. Golik, V. V., Moiseev, B. V., Gulkova, S. G., & Zemenkov, Yu. D. (2018). Mathematic simulation of the effect of a buried oil pipeline on permafrost soils. International Conference Transport and Storage of Hydrocarbons, August, 29-31 (Tyumen). IOP Conference Series: Materials Science and Engineering, 445, pp. [1-5]. (In English). DOI: 10.1088/1757-899X/445/1/012004
4. Zemenkova, M. Yu. (Comp.) (2019). Sistemnyy analiz i monitoring energotekhnologicheskikh kompleksov. Metodicheskie ukazaniya po vypolneniyu kursovogo proekta dlya studentov napravleniya 21.04.01 Neftegazovoe delo programmy "Nadezhnost' i bezopasnost' ob''ektov transporta uglevodorodnykh resursov" vsekh form obucheniya. Tyumen, Industrial University of Tyumen Publ., 40 p. (In Russian).
5. Zemenkova, M. Yu. (2019). Neural network monitoring and predictive control of the reliability and safety of gas distribution networks using deep learning algorithms. International Conference on Extraction, Transport, Storage and Processing of Hydrocarbons and Minerals, August, 19-20 (Tyumen). IOP Conference Series: Materials Science and Engineering, 663 (1), pp. [1–8]. (In English). DOI: 10.1088/1757-899X/663/1/012006
6. Zemenkova, M. Y., Shipovalov, A. N., & Zemenkov, Y. D. (2015). Mathematic Modeling of Complex Hydraulic Machinery Systems When Evaluating Reliability Using Graph Theory. International Scientific and Practical Conference on Urgent Problems of Modern Mechanical Engineering December, 17-18 (Yurga). IOP Conference Series: Materials Science and Engineering, 127, pp. [1-9]. (In English). DOI: 10.1088/1757-899X/127/1/012056
7. Zemenkov, Yu. D., Moiseev, B. V., Bogatenkov, Yu. V., Nalobin, N. V., & Dudin, S. M. (2016). Energotekhnologicheskie kompleksy pri proektirovanii i ekspluatatsii ob''ektov transporta i khraneniya uglevodorodnogo syr'ya. Tyumen, Vektor Buk Publ., 256 р. (In Russian).
8. Golik, V. V., Zemenkov, Yu. D., & Shagbanov, I. F. (2020). Complex thermophysical modeling of processes in the foundation soil of oil pipelines in the Arctic and offshore conditions. International Conference on Extraction, Transport, Storage and Processing of Hydrocarbons & Materials (ETSaP 2020), August, 24-25 (Tyumen). IOP Conference Series: Materials Science and Engineering, 952, pp. [1-5]. (In English). DOI: 10.1088/1757-899X/952/1/012014
9. Zemenkova, M., Shalay, V., Zemenkov, Y., & Kurushina, E. (2016). Improving the Efficiency of Administrative Decision-Making when Monitoring Reliability and Safety of Oil and Gas Equipment. MATEC Web of Conferences, 73, pp. [1-8]. (In English). DOI: 10.1051/matecconf/20167307001
10. Tabunschikov, Yu. A. (1993). Mathematical models of thermal conditions in buildings. USA, CRC Press, 220 p. (In English).
11. Balikaeva, M. B., Chizhevskaya, E. L., Grevtseva, G. Ya., Kotlyarova, I. O., & Volkova, M. A. (2018). Innovative technologies as a means of the development of future engineers' professional mobility abroad. International Scientific and Practical Conference on Innovations in Engineering and Technology, June, 28-29 (Veliky Novgorod). IOP Conference Series: Materials Science and Engineering, 441, pp. [1-5]. (In English). DOI 10.1088/1757-899X/441/1/012007
12. Golubin, S. I. (2012). Nauchno-metodicheskie osnovy prognoza vzaimodeystviya podzemnykh gazoprovodov s zasolennymi mnogoletnemerzlymi gruntami poluostrova Yamal. Avtoref. diss. … kand. geol.-mineral. nauk. Moscow, 23 p. (In Russian).
13. Gubaydullin, A. A. (1999). Prilozheniya mekhaniki mnogofaznykh sistem k razvedke, dobyche i transportu nefti i gaza. Izvestiya vysshikh uchebnykh zavedeniy. Neft' i gaz, (2), pp. 49-61.
14. Grigor'ev, V. A., & Zorin, V. M. (Eds.) (1982). Teplo- i massoobmen. Teplotekhnicheskiy eksperiment : spravochnik. Moscow, Energoizdat Publ., 512 p. (In Russian).
15. Golik, V. V., Moiseev, B. V., Gladenko, A. A., Zemenkov, Yu. D., & Trifonova, E. N. (2019). Mathematical modelling of the interaction of a multilayer pipeline with permafrosts in RF Arctic zone. AIP Conference Proceedings, August, 28, 2141(1). (In English). Available at: https://doi.org/10.1063/1.5122161
16. Golik, V. V., Moiseev, B. V., Gulkova, S. G., & Zemenkov, Yu. D. (2018). Mathematic simulation of the effect of a buried oil pipeline on permafrost soils. International Conference Transport and Storage of Hydrocarbons, August, 29-31 (Tyumen). IOP Conference Series: Materials Science and Engineering, 445, рр. [1-5]. (In English). DOI: 10.1088/1757-899X/445/1/012004
17. Zemenkova, M. Yu., Mikhailov, P. Yu., Shabarov, A. B., & Shastunova, U. Yu. (2020). Thermal impact of buried reservoirs with industrial waste of the fuel and energy complex on frozen soils. International Conference on Extraction, Transport, Storage and Processing of Hydrocarbons & Materials, 24-25 August 2020 (Tyumen). IOP Conference Series: Materials Science and Engineering, 952 (1), рр. [18]. (In English). DOI 10.1088/1757-899X/952/1/012008
18. Moiseev, B. V., Zemenkov, Yu. D., Chekardovskiy, M. N., Chekardovskiy, S. M., Zemenkova, M. Yu., Razboynikov A. A.,… Fedorova, O. B. (2019). Aspekty nadezhnosti i diagnostiki neftegazovykh ob''ektov. Tyumen, Industrial University of Tyumen Publ., 422 p. (In Russian).
19. Yakupov, A. U., Voronin, K. S., & Cherentsov, D. A. (2019). Temperature condition of a stopped underground oil pipeline. International Conference on Extraction, Transport, Storage and Processing of Hydrocarbons and Minerals, August, 19-20 (Tyumen). IOP Conference Series: Materials Science and Engineering, 663, pp. [1-6]. (In English). DOI: 10.1088/1757-899X/663/1/012013
Review
For citations:
Golik V.V., Zemenkov Yu.D., Zemenkova M.Yu., Chizhevskaya E.L., Voronin K.S. Simulation modeling of non-stationary thermophysical processes when monitoring the reliability of main oil pipelines in the Arctic. Oil and Gas Studies. 2021;(2):89-103. (In Russ.) https://doi.org/10.31660/0445-0108-2021-2-89-103