Preview

Oil and Gas Studies

Advanced search

A computational and experimental assessment of the pipeline stress state under bending load and internal pressure

https://doi.org/10.31660/0445-0108-2021-2-114-126

Abstract

Main pipelines are subjected to a complex of loads during operation. Monitoring of the stress state of the pipeline wall is necessary for performing strength calculations and evaluating the pipeline reliability.

The article is devoted to the method of computational and experimental study of the stress state of a pipe under a bending load and combined action of a bending load and internal pressure.

The experiments have been carried out on a laboratory bench. The object of the study is a pipe that has the following characteristics: an outer diameter of 325 mm, a wall thickness of 8.5 mm and steel grade of "14XGS". Electrical resistance strain gages were used to measure the strain of the pipe wall. Formulas for calculating the stress state components of the pipe wall in the elastic-plastic deformation stage are proposed. It is given formulas for calculating the stress state components of the pipe wall in the elastic-plastic deformation stage. Plots of hoop and longitudinal stresses as well as von Mises stress are obtained for the case of bending load on the pipe and the case of combined loading under bending and internal pressure. The areas of maximum values of von Mises stress where the transition to the limiting state is most likely have been determined.

When only the bending load is applied, the maximum von Mises stress zone is observed on the lower area of the pipe in its central region. When combined loading under bending and internal pressure, the maximum von Mises stress zone is observed on the lateral area of the pipe in its central region.

About the Author

A. A. Ignatik
Ukhta State Technical University
Russian Federation

Anatoly А. Ignatik, Candidate of Engineering, Senior Lecturer at the Department of Design and Maintenance of Main Gas and Oil Pipelines

Ukhta



References

1. Islamov, R. R., Aginey, R. V., & Isupova, E. V. (2017). Analysis of ways and methods of monitoring the stressed state of underground oil and gas pipelines, working in complicated engineering-geological conditions. Transport and Storage of Oil Products and Hydrocarbons, (6), pp. 31-40. (In Russian).

2. Makarov, G. I. (2007). Matematicheskie osnovy monitoringa napryazhennodeformirovannogo sostoyaniya stenki truby magistral'nogo nefteprovoda. Pipeline Transport: Theory and Practice, (1(7)), pp. 92-95. (In Russian).

3. Leonov, I. S. (2013). Sovershenstvovanie koertsitimetricheskogo metoda dlya analiza napryazhennogo sostoyaniya neftegazoprovodov. Diss. … kand. tekhn. nauk. Ukhta, 116 p. (In Russian).

4. lgnatik, А. А. (2018). Experimental and theoretical investigation of the strain state of the pipeline defective areas. Science & Technologies: Oil and Oil Products Pipeline Transportation, 8(2), pp. 147-153. (In Russian).

5. lgnatik, А. А. (2020). Stress-strain state characteristics of pipeline wall under the internal pressure, bending, and torsion. Gas Industry, (4(799)), pp. 102-107. (In Russian).

6. Kec, J., & Cerny, I. (2017). Stress-strain assessment of dents in wall of high pressure gas pipeline. Procedia Structural Integrity, 5, pp. 340-346. (In English). DOI: 10.1016/j.prostr.2017.07.180

7. Höhler, S., & Brauer, H. Assessment of HFI line pipe for Strain-Based Design via Full-Scale Testing. (In English). Available at: https://www.mannesmann-lineipe.com/fileadmin/footage/MEDIA/gesellschaften/smlp/Documents/Assessment_of_HFI_line_pipe_for_Strain-Based_Design_via_Full-Scale_Testing.pdf

8. Islamov, R. R. (2018). Sovershenstvovanie sistemy monitoringa tekhnicheskogo sostoyaniya protyazhennykh uchastkov magistral'nykh neftegazoprovodov primeneniem volokonnoopticheskikh sensorov deformatsii. Diss. … kand. tekhn. nauk. Ukhta, 168 p. (In Russian).

9. Egorov, F. A., Neugodnikov, A. P., Veliyulin, I. I., Zorin, A. E., & Vasil'ev, P. D. (2011). Issledovanie napryazhenno-deformirovannogo sostoyaniya trub magistral'nogo truboprovoda s pomoshch'yu volokonno-opticheskikh datchikov deformatsii. Oil and Gas Territory, (10), pp. 26-29. (In Russian).

10. Vlasov, S. V., Vasin, O. E., Gubanok, I. I., Dudov, A. N., Egurcov, S. A., Lanchakov, G. A.,… Stepanenko, A. I. Equipment for measurement of linear deformations of main pipeline. Pat. RF 2334162. No 2007102912/06. Applied: 26.01.2007. Published: 20.09.2008. 7 p. (In Russian).

11. Young, W. C., & Budynas, R. G. (2002). Roark's Formulas for Stress and Strain. 7th edition. McGraw-Hill, 854 p. (In English).

12. Feodos'ev, V. I. (2005). Soprotivlenie materialov. 13rd edition, reprint. Moscow, Bauman Moscow State Technical University Publ., 592 p. (In Russian).

13. Neganov, D. A. (2018). Basics of deterministic normative methods of pipeline strength substantiation. Science & Technologies: Oil and Oil Products Pipeline Transportation, 8(6), pp. 608-617. (In Russian). DOI: 10.28999/2541-9595-2018-8-6-608-617

14. Aleksandrov, A. V., & Potapov, V. D. (2002). Soprotivlenie materialov. Osnovy teorii uprugosti i plastichnosti. 2nd edition, revised. Moscow, Vysshaya shkola Publ., 400 p. (In Russian).

15. Bezuhov, N. I. (1968). Osnovy teorii uprugosti, plastichnosti, polzuchesti. Moscow, Vysshaya shkola Publ., 512 p. (In Russian).

16. Ignatik, A. A. (2020). Sovershenstvovanie metodiki otsenki rabotosposobnosti magistral'nykh nefteprovodov s kombinirovannymi defektami tipa "vmyatina s poterey metalla". Diss. … kand. tekh. nauk. Ukhta, 180 p. (In Russian).

17. Kucheryavyy, V. I. (2011). Teoriya uprugosti. Ukhta, Ukhta State Technical University Publ., 125 p. (In Russian).

18. Skvortsov, Yu. V. (2013). Konspekt lektsiy po distsipline teorii plastichnosti i polzuchesti. Samara, Samara University Publ., 85 p. (In Russian).

19. Sokolovskiy, V. V. (1969). Teoriya plastichnosti. 3rd edition, revised and expanded. Mos-cow, Vysshaya shkola Publ., 608 p. (In Russian).

20. Mazur, I. I., & Ivantsov, O. M. (2004). Bezopasnost' truboprovodnykh system. Moscow, ITS "ELIMA" Publ., 1104 p. (In Russian).

21. Gumerov, A. К., Karimov, R. M., Askarov, R. М., & Shamilov, Kh. Sh. (2020). Determination and prediction of the stress-strain state of pipeline, taking into account soil changes during operation. Science & Technologies: Oil and Oil Products Pipeline Transportation, 10(4), pp. 372-378. (In Russian). DOI: 10.28999/2541-9595-2020-10-4-372-378

22. Zaripov, R. M. (2005). Nauchnye osnovy rascheta napryazhenno-deformirovannogo sostoyaniya truboprovodov, prolozhennykh v slozhnykh inzhenerno-geologicheskikh usloviyakh. Diss. … dokt. tekh. nauk. Ufa, Ufa State Petroleum Technological University, 346 p. (In Russian).

23. Korobkov, G. E. (2010). Modelirovanie oslozhnennykh usloviy ekspluatatsii magistral'nykh neftegazoprovodov. Diss. … dokt. tekh. nauk. Ufa, Ufa State Petroleum Technological University, 363 p. (In Russian).

24. Vlasov, V. Z. (1959). Tonkostennye uprugie sterzhni. 2nd edition, revised and expanded. Moscow, Fizmatgiz Publ., 568 p. (In Russian).


Review

For citations:


Ignatik A.A. A computational and experimental assessment of the pipeline stress state under bending load and internal pressure. Oil and Gas Studies. 2021;(2):114-126. (In Russ.) https://doi.org/10.31660/0445-0108-2021-2-114-126

Views: 387


ISSN 0445-0108 (Print)