Well productivity and reservoir recovery enhancement with using vibration wave impact technology
https://doi.org/10.31660/0445-0108-2021-4-73-83
Abstract
The use of physical fields of elastic vibrations in methods of increasing well productivity and oil recovery is presented. Borehole hydrodynamic generators of elastic vibrations are the most preferable for performing vibration-wave treatments of the bottom-hole zone. Many generator designs lack reasonable parameters for the generated pressure fluctuations. In this regard, it is necessary a bench and oilfield research practice of hydrodynamic generators various designs with an objective hardware assessment of their operating parameters.
About the Authors
I. N. KvasovRussian Federation
Igor N. Kvasov, Candidate of Economics, Professor at the Department of Oil and Gas Engineering, Standardization and Metrology.
Omsk
K. Yu. Fetisov
Russian Federation
KiriU Yu. Fetisov, Engineer of the Integrated Design Department, ONHP (OmskNefteHimProect) PJSC, Postgraduate.
Omsk
M. A. Aleksandrov
Russian Federation
Michael A. Aleksandrov, Candidate of Engineering, Associate Professor at the Department of Transportation of Hydrocarbon Resources.
Tyumen
A. A. Gladenko
Russian Federation
Aleksey A. Gladenko, Doctor of Engineering, Professor at the Department of Transportation of Hydrocarbon Resources.
Tyumen
References
1. Umetbaev, V. G. (1989). Geologo-tehnicheskie meroprijatija pri jekspluatacii skvazhin. Moscow, Nedra Publ., 217 p. (In Russian).
2. Tsibulchik, G. M. (Ed.) (2004). Active seismology with powerful vibration sources. Novosibirsk, 387 p. (In Russian).
3. Taranuha, M. A., Zhurbin, O. V., & Zhurbina, I. N. (2011). Issledovanie kolebanij su-dovyh sterzhnevyh konstrukcij s uchjotom soprotivlenija vneshnej sredy razlichnoj plotnosti. Morehodstvo i morskie nauki - 2011 : izbrannye doklady tret'ej Sahalinskoj regional'noj morskoj nauchno-tehnicheskoj konferencii, February, 15-16, 2011. Juzhno-Sahalinsk, pp. 82-93. (In Russian).
4. Burian, Yu. A., Babichev, D. O., Silkov, M. V., Belkov, V. N., & Kvasov, I. N. (2017). Evaluating effectiveness of vibration isolation using hydro pneumatic spring with inertial motion converter. Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering, (1(1)), pp. 35-38. (In Russian).
5. Burian, Yu. A., Kvasov, I. N., & Sorokin, V. N. (2020). K voprosu o vybore skvazhin-nogo generatora uprugih voln dlja tehnologii vybrosejsmicheskogo vozdejstvija na neftegazovye zalezhi. Problemy mashinovedenija: materialy IV mezhdunarodnoj nauchno-tehnicheskoj konferencii, March, 17-19, 2020. Omsk, OmGTU Publ., pp. 37-44. (In Russian).
6. Dyblenko, V. P., Marchukov, E. Yu., Zhdanov, V. I., Kamalov, R. N., & Tufanov, I. A. Sposob vozbuzhdenija kolebanij potoka zhidkosti i gidrodinamicheskij generator kolebanij. Pat. RF 2144440 C1. No. 98116022/28. Applied: 24.08.98. Published: 20.01.00. (In Russian).
7. Dyblenko, V. P., Komalov, R. N., Sharifullin, R. Ya., & Tufanov, I. A. (2000). Rise in Productivity and Well Reanimation by Implementation of Vibration Waves. Moscow, Nedra Publ., 381 p. (In Russian).
8. Zhdanov, V. I. (2007). Avtokolebanija v zhidkostnyh centrobezhnyh forsunkah. Moscow, MAI-Print Publ., 203 p. (In Russian).
9. Yakovlev, A. L., Shamara, Yu. A., & Datsenko, E. N. (2016). Technical means for the treatment of wells with using vibration wave impact. Borehole oscillators. Science. Engineering. Technology (polytechnical bulllentin), (1), pp. 139-147. (In Russian).
10. Avduevskij, V. S., Ganiev, R. F., Kalashnikov, G. A., Kostrov, S. A., & Mufazalov, R. Sh. Gidrodinamicheskij generator kolebanij. Pat RF 2015749 C1. No. 5003508/29. Applied: 04.10.91. Published: 15.07.94. (In Russian).
11. Andriasov, R. S., Mischenko, I. T., Petrov, A. I., Molchanov, A. G., & Gimatudinov, Sh. K. (Eds.) (1983). Spravochnoe rukovodstvo po proektirovaniju razrabotki i jekspluatacii neftjanyh mestorozhdenij: Dobycha nefti. Moscow, Nedra Publ., 455 p. (In Russian).
12. Gadiev, S. M., Rabinovich, E. Z., & Karandasheva, V. M. (1981). Vlijanie vibracii na reologicheskie svojstva zhidkostej. Azerbaydzhanskoe neftyanoe khozyaystvo, (1), pp. 43-46. (In Russian).
13. Voronov, A. A. (ed.) (1977). Teorija avtomaticheskogo upravlenija. Moscow, Vysshaya shkola Publ. (In Russian).
14. Grekov, S. V. (2005). Issledovanie gidravlicheskogo kanala svjazi telemetricheskoj sis-temy kontrolja zabojnyh parametrov v processe burenija. Oilfield Engineering, (1). (In Russian). Available at: http://ogbus.ru/files/ogbus/authors/Grekov/Grekov_2.pdf
15. Tehnologija vibrovolnovogo vozdejstvija na prizabojnuju zonu skvazhin kak jeffektivnyj sposob povyshenija produktivnosti plastov. (In Russian). Available at: http://knowledge.allbest.ru/manufacture/3c0b65625b2ad78a4d53a88421206d37_0.html
16. Kuznetsov, O. L., & Efimova, S. A. (1983). Primenenie ul'trazvuka v neftjanoj promysh-lennosti. Moscow, Nedra Publ., 192 p. (In Russian).
17. White, J. E. (1983). Underground sound: application of seismic waves. Amsterdam, Elsevier. (In English).
18. Chichinin, I. S. (2015). Pile-supported seismic-wave generator. Geology and mineral resources of Siberia, (1), pp. 86-92. (In Russian).
19. Popov, A. A. (1990). Udarnoe vozdejstvie na prizabojnuju zonu skvazhin. Moscow, Nedra Publ., 157 p. (In Russian).
20. Popov, D. N. (1987). Dinamika i regulirovanie gidro- i pnevmosistem. Moscow, Mashi-nostroenie Publ., 464 p. (In Russian).
Review
For citations:
Kvasov I.N., Fetisov K.Yu., Aleksandrov M.A., Gladenko A.A. Well productivity and reservoir recovery enhancement with using vibration wave impact technology. Oil and Gas Studies. 2021;(4):73-83. (In Russ.) https://doi.org/10.31660/0445-0108-2021-4-73-83