Preview

Oil and Gas Studies

Advanced search

Technology for the production of carbon nanomaterials by pyrolysis

https://doi.org/10.31660/0445-0108-2021-4-95-108

Abstract

The processes of oil production and preparation involve the formation of a mixture of various hydrocarbon gases, otherwise called associated petroleum gas. Today most of associated petroleum gas produced is burned, causing damage to the natural environment, or used as an energy supply for technological equipment. At the same time, associated petroleum gas can be used as a valuable raw material to produce various chemicals. In the article, the existing methods of APG utilization are considered, and the relatively simplest and most environmentally friendly pyrolysis method is proposed. A comparative analysis of the methods of mixing raw materials was carried out, as a result of which it was revealed that the mechanical and vibration methods are considered the most rational. An experimental installation for processing petroleum associated gas by pyrolysis is presented. The results of experimental studies of the production of carbon fiber nanomaterials and hydrogen are presented. Gas (CH4) obtained by utilization of hydrocarbon-containing waste (oil sludge) was used as a feedstock. The average yield of the target products was 81 l/h for hydrogen and 325.5 g/h for nanofiber carbon.

About the Authors

O. A. Kolenchukov
Siberian Federal University
Russian Federation

Oleg A. Kolenchukov, Postgraduate at the Department of Technological Machines and Equipment of the Oil and Gas Complex.

Krasnoyarsk



E. A. Petrovsky
Siberian Federal University
Russian Federation

Eduard A Petrovsky, Doctor of Engineering, Professor, Head of the Department of Technological Machines and Equipment of the Oil and Gas Complex.

Krasnoyarsk



N. A. Smirnov
Reshetnev Siberian State University of Science and Technology
Russian Federation

Nikolay A. Smirnov, Doctor of Engineering, Professor, Head of the Department of Technical Mechanics.

Krasnoyarsk



References

1. Baskaev, K. (2011). Chemodan bez ruchki. Neff Rossii, (1), pp. 56-59. (In Russian).

2. Agaurov, S. Yu. (2018). Netraditsionnaya utilizatsiya PNG. Pererabotka poputnogo gaza v estestvennye komponenty nefti. Delovoy zhurnal “Neftegaz. ru”, (4). (In Russian). Available at: https://neftegaz.ru/tech-library/energoresursy-toplivo/141459-poputnyy-neftyanoy-gaz-png/

3. Vorobev, A., & Shchesnyak, E. (2019). Associated Petroleum Gas Flaring: The Problem and Possible Solution. 14th International Congress for Applied Mineralogy (ICAM2019). Springer Proceedings in Earth and Environmental Sciences, pp. 227-230. (In English). DOI: 10.1007/978-3-030-22974-055

4. Arutyunov, V. S., Savchenko, V. I., Sedov, I., Nikitin, A. V., Troshin, K. Y., Norisov A. A., & Strekova, L. N. (2017). New Potentialities for Utilization of Associated Petroleum Gases in Power Generation and Chemicals Production. Eurasian Chemico-Technological Journal, 19(3), pp. 265-271. (In English). DOI: 10.18321/ectj662

5. Andreykina, L. V. (2005). Sostav, svoystva i pererabotka poputnykh gazov neftyanykh mestorozhdeniy Zapadnoy Sibiri. Avtoref. diss. ... kand. tekhn. nauk. Ufa, 21 p. (In Russian).

6. Knizhnikov, A., & Pusenkova, N. (2009). Problemy i perspektivy ispol'zovaniya neftyanogo poputnogo gaza v Rossii. Ezhegodnyy obzor problemy v ramkakh proekta “Ekologiya i Energetika Mezhdunarodnyy kontekst”. Vypusk 1. Moscow, 28 p. (In Russian).

7. Altunina, L. K., Svarovskaya, L. I., Yashchenko, I. G., & Alekseeva, M. N. (2014). Zagryaznenie okruzhayushchey sredy pri szhiganii poputnogo neftyanogo gaza na territorii neftedobyvayushchikh predpriyatiy. Khimiya v interesakh ustoychivogo razvitiya, (22), pp. 217-222. (In Russian).

8. Knizhnikov, A. Yu., & Il’in, A. M. (2017). Problemy i perspektivy ispol'zovaniya poputnogo neftyanogo gaza v Rossii. Moscow, 32 p. (In Russian). Available at: https://www.iprbookshop.ru/97448.html

9. Fedyaeva, I. M., & Novikov, A. A. (2010). Evaluation of the methods of processing following oil gases of the West Siberia layers. Vestnik Yugorskogo gosudarstvennogo universiteta, (4(19)), pp. 73-80. (In Russian).

10. Xie, L., Xu, J., Zhang, Y., & He, Y. (2020). Chapter Seven - Biogas upgrading. Advances in Bioenergy, (5), pp. 309-344. (In English). DOI: 10.1016/bs.aibe.2020.04.006

11. Bart, J. C. J., Palmeri, N., & Cavallaro, S. (2010). Evolution of biodiesel and alternative diesel fuels. Biodiesel Science and Technology, pp. 713-782. (In English). DOI: 10.1533/9781845697761.713

12. Krasil'nikova, O. K., Pogosyan, A. S., Serebryakova, N. V., Grankina, T. Yu., & Khodan, A. N. (2008). Poluchenie uglerodnykh nanomaterialov s ispol'zovaniem poristogo oksida alyuminiya kak templata. Fizikokhimiya poverkhnosti i zashchita materialov, 4(44), pp. 389-394. (In Russian).

13. Sengupta, J. (2020). Application of carbon nanomaterials in the electronic industry. Handbook of Nanomaterials for Manufacturing Applications. Micro and Nano Technologies, pp. 421-450. (In English). DOI: 10.1016/B978-0-12-821381-0.00017-X

14. Zaytseva, O., & Neumann, G. (2016). Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chemical and Biological Technologies in Agriculture, (17), p. 26. (In English). DOI: 10.1186/s40538-016-0070-8

15. Bogdanov, Yu. V., & Gus'kov, A. M. (2015). Modelirovanie dinamiki rotora elektroshpindelya na magnitnykh podshipnikakh. Science & education, (1), pp. 201-220. (In Russian). DOI: 10.7463/0115.0753146

16. Berlin, A. Ya. (1952). Tekhnika laboratornoy raboty v organicheskoy khimii. Moscow - Leningrad, 287 p. (In Russian).

17. Korneev, A. E., Solov'ev, E. A., & Petrovskiy, E. A. Reaktor dlya pererabotki uglevodorodov s polucheniem vodoroda i nanovoloknistogo ugleroda. Pat. RF 185231 U1. No 2018127269. Applied: 24.07.2018. Published: 27.11.2018. (In Russian).

18. Petrovsky, E. A., Kolenchukov, O. A., & Solovyev, E. A. (2019). Study of pyrolysis of oil sludge. IOP Conference Series: Materials Science and Engineering, 537, pp. [1-5]. (In English). DOI: 10.1088/1757-899x/537/3/032082

19. Kolenchukov, O. A., & Petrovsky, E. A. (2020). Development of technological energy¬saving systems based on pyrolysis reactors. Petroleum Engineering, 18(1), pp. 130-136. (In Russian). DOI: 10.17122/ngdelo-2020-1-130-136

20. Solov'ev, E. A., Kuvshinov, D. G., Ermakov, D. Yu., & Kuvshinov, G. G. Sposob polucheniya vodoroda i nanovoloknistogo ugleroda. Pat. RF 2312059 C1. No 2006110780/15. Applied: 03.04.2006. Published: 10.12.2007. (In Russian).

21. Anan'ev, I. V., Varfolomeeva, A. S., Kuvshinov, G. G., Kuvshinov, P. B., Solov'ev, E. A., Trachuk, A. V.,. Shinkarev, V. V. Pat. RF 2462293 C1. No 20111100755/05. Applied: 12.01.2011. Published: 27.09.2012. (In Russian).

22. Likholobov, V. A., Surovikin, V. F., Plaksin, G. V., Tsekhanovich, M. S., Surovikin, Y. V., & Baklanova, O. N. (2008). Nanostructured carbon materials for catalysis and adsorption. Catalysis in Industry, pp. 63-68. (In Russian).


Review

For citations:


Kolenchukov O.A., Petrovsky E.A., Smirnov N.A. Technology for the production of carbon nanomaterials by pyrolysis. Oil and Gas Studies. 2021;(4):95-108. (In Russ.) https://doi.org/10.31660/0445-0108-2021-4-95-108

Views: 404


ISSN 0445-0108 (Print)