The geosolitonic concept of high output hydrocarbon deposits formation
https://doi.org/10.31660/0445-0108-2021-6-13-22
Abstract
Based on the well-known results of studies of the ether-geosoliton concept of the growing Earth, the article presents the conclusions that made it possible to propose a model of thermonuclear synthesis of chemical elements that form renewable reserves of developed oil and gas fields. It was revealed that local zones of abnormally high production rates of production wells and, accordingly, large cumulative production at developed fields in Western Siberia are due to the restoration of recoverable reserves due to geosoliton degassing. Therefore, when interpreting the results of geological and geophysical studies, it is necessary to pay attention to the identified geosoliton degassing channels, since in the works of R. M. Bembel and others found that they contributed to the formation of a number of hydrocarbon deposits in Western Siberia. When interpreting the results of geological-geophysical and physicochemical studies of the fields being developed, it is recommended to study the data of the ring high-resolution seismic exploration technology in order to identify unique areas of renewable reserves, which can significantly increase the component yield of hydrocarbon deposits.
About the Authors
R. M. BembelRussian Federation
Robert M. Bembel, Doctor of Geology and Mineralogy, Professor at the Department of Development and Exploitation of Oil and Gas Fields
Tyumen
S. R. Bembel
Russian Federation
Sergey R. Bembel, Doctor of Geology and Mineralogy, Professor at the Department of Geology of Oil and Gas Fields
Tyumen
M. I. Zaboeva
Russian Federation
Marina I. Zaboeva, Candidate of Engineering, Associate Professor at the Department of Development and Exploitation of Oil and Gas Fields
Tyumen
E. E. Levitina
Russian Federation
Ekaterina E. Levitina, Candidate of Engineering, Associate Professor at the Department of Development and Exploitation of Oil and Gas Fields
Tyumen
References
1. Kropotkin, P. N. (1986). Gipoteza D. I. Mendeleeva o neorganicheskom proiskhozhdenii nefti i ee razvitie sovremennoy naukoy. Zhurnal Vsesoyuznogo khimicheskogo obshchestva imeni D. I. Mendeleeva, XXXI(5), pp. 482-486. (In Russian).
2. Yanitskiy, I. N. (1998). Novoe v naukakh o Zemle. Moscow, Agar Publ., 80 p. (In Russian).
3. Mendeleev, D. I. (1949). Sochineniya. Tom 10. [Neft']. Moscow - Leningrad, AN SSSR Publ., 830 p. (In Russian).
4. Ognev, I. A. (2012). Zemlya i Vselennaya: zakony garmonii. Shadrinsk, Shadrinskiy dom pechati Publ., 332 p. (In Russian).
5. Bembel, R. M., Megerya, V. M., & Bembel, S. R. (2003). Geosolitony: funktsional'naya sistema Zemli, kontseptsiya razvedki i razrabotki mestorozhdeniy uglevodorodov. Tyumen, Vektor Buk Publ., 308 p. (In Russian).
6. Bembel, R. M., Megerya, V. M., & Bembel S. R. (2001). Geosolitonnaya priroda subvertikal'nykh zon destruktsii. Russian Geophysics, (S2), pp. 36-49 (In Russian).
7. Bembel, R. M., Megerya, V. M., & Bembel, S. R. (2001). Geosolitonnaya kontseptsiya obrazovaniya mestorozhdeniy uglevodorodov. Russian Geophysics, (S2), pp. 50-53 (In Russian).
8. Vernadskiy, V. I. (1987). Khimicheskoe stroenie biosfery Zemli i ee okruzheniya. 2nd edition. Moscow, Nauka Publ., 340 p. (In Russian).
9. Bembel, R. M. (2016). Efir-geosolitonnaya kontseptsiya rastushchey Zemli. Tyumen, Industrial University of Tyumen Publ., 393 p. (In Russian).
10. Bembel, R. M., & Zaboeva, M. I. (2020). Efir-geosolitonnoe dykhanie Zemli i Vselennoy. Tyumen, Industrial University of Tyumen Publ., 223 p. (In Russian).
11. Nadeev, R. K., & Nadeev, T. R. (2009). Efir Vselennoy. Moscow, Stolichnyy biznes Publ., 524 p. (In Russian).
12. Atsyukovskiy, V. A. (2006). Populyarnaya efirodinamika ili kak ustroen mir, v kotorom my zhivem. Moscow, Znanie Publ., 288 p. (In Russian).
13. Shtengelov, E. S. (1984). Priznaki sovremennogo global'nogo rasshireniya zemnoy kory. Problemy rasshireniya i pul'satsiy Zemli. Moscow, Nauka Publ., pp. 129-154. (In Russian).
14. Surdin, V. G. (Ed.) (2007). Astronomiya: vek XXI. Fryazino, Vek 2 Publ., 608 p. (In Russian).
15. Bembel, R. M., & Shchetinin, I. A. (2016). Perspektivy geosolitonnoy tekhnologii poiska i razvedki mestorozhdeniy strategicheskogo syr'ya v otlozheniyakh bazhenovskoy svity. Radioaktivnost' i radioaktivnye elementy v srede obitaniya cheloveka. Materialy V Mezhdunarodnoy konferentsii. Tomsk, September, 13-16, 2016. Tomsk, STT LLC Publ., pp. 123-127. (In Russian).
16. Korotenko, V. A., Kushakova, N. P., Zaboeva, M. I., & Aleksandrov M. A. (2015). The dependence of the physical parameters of the viscous oil from the thermobaric conditions and coordinate. Modern Problems of Science and Education. Surgery, (1-1), pp. 438. (In Russian).
17. Levitina, E. E., & Yakimenko, I. A. (2015). Obosnovanie ekspluatatsionnykh ob''ektov na mnogoplastovykh neftegazokondensatnykh mestorozhdeniyakh. Academic Journal of West Siberia, 11(4(59)), pp. 28-30. (In Russian).
18. Megerya, V. M. (2009). Poisk i razvedka zalezhey uglevodorodov, kontroliruemykh geosolitonnoy degazatsiey Zemli. Moscow, Lokus Standi Publ., 256 p. (In Russian).
19. Zyuzko, A. N., & Zaboeva M. I. (2018). Hydraulic fracturing as a means of increasing the intensification of hydrocarbon production. Academic Journal of West Siberia, 14(6(77)), pp. 51. (In Russian).
20. Bembel, R. M. (1991). Vysokorazreshayushchaya ob''emnaya seysmorazvedka. Novosibirsk, Nauka Publ., 150 p. (In Russian).
Review
For citations:
Bembel R.M., Bembel S.R., Zaboeva M.I., Levitina E.E. The geosolitonic concept of high output hydrocarbon deposits formation. Oil and Gas Studies. 2021;(6):13-22. (In Russ.) https://doi.org/10.31660/0445-0108-2021-6-13-22