Preview

Oil and Gas Studies

Advanced search

Features of the composition of gas sorbed in the rocks of the upper part of the sedimentary cover section

https://doi.org/10.31660/0445-01108-2021-6-23-35

Abstract

The topicality of the article is determined by the insufficient reliability of geochemical oil and gas exploration data for the localization of petroliferous geological objects. Geochemical surveys are carried out to mapping hydrocarbon anomalies caused by vertical migration of fluid from hydrocarbon deposits. Practice shows that not all anomalies in the content of hydrocarbons in the near-surface environment are related to the oil-bearing capacity of a given subsoil area. Therefore, when interpreting the data of geochemical oil and gas prospecting surveys, it is necessary to take into account not only quantitative indicators (namely, content of hydrocarbon gases on the surface), but also the composition of the gas sorbed by the near-surface substrate. The purpose of the article is to determine the composition of the dissipated gases in the rocks of the upper part of the section, to reveal the inter-component relationships, and, on this basis, to determine the genesis of each gas component sorbed by the rocks of the upper part of the section. To solve this problem, statistical processing of data on the component content of gas from core degassing of shallow (up to 30 m) wells drilled in the petroliferous territory of the north of Western Siberia was carried out. The obtained results confirmed the genetic heterogeneity of dissipated hydrocarbons and inorganic gases in the upper part of the sedimentary cover.

About the Authors

M. D. Zavatsky
Industrial University of Tyumen
Russian Federation

Mikhail D. Zavatsky, Candidate of Geology and Mineralogy, Associate Professor at the Department of Geology of Oil and Gas Fields, Head of the Educational and Scientific Geochemical Laboratory

Tyumen



A. A. Nezhdanov
Industrial University of Tyumen; Gazprom VNIIGAZ LLC
Russian Federation

Аleksey A. Nezhdanov, Doctor of Geology and Mineralogy, Professor, at the Department of Applied Geophysics, Industrial University of Tyumen, Chief Researcher, Gazprom VNIIGAZ LLC

Tyumen



A. N. Kurchatova
Industrial University of Tyumen; Messoyakhaneftegaz JSC
Russian Federation

Anna N. Kurchatova, Candidate of Geology and Mineralogy, Director of the Tyumen Industrial University Subarctic Research and Training Ground, Head of the Geotechnical Monitoring Department of Messoyakhaneftegaz JSC

Tyumen



References

1. Zavatskiy, M. D. (2008). Dependence of surface fields concentration of hydrocarbon gases on the oil content of the sedimentary cover within the West-Siberian oil and gas-bearing basin. Higher Educational Institutions. Neft' i Gas, (2), pp. 9-16. (In Russian).

2. Zavatskiy, M. D., & Tseplyaeva, A. I. (2016). Informativnost' geokhimicheskikh pokazateley pri poiske uglevodorodov v Zapadnoy Sibiri (po rezul'tatam geokhimicheskoy s''emki po snegu). Estestvennye i tekhnicheskie nauki, (10(100)), pp. 70-73. (In Russian).

3. Khisamov, R. S., Harrington, P., German, V., Voitovich, S. E., & Chernishova, M. G. (2009). The using of Gore-Sorber method at complex geophisical and geochemical of the investigations at diagnostics of the oilfield. Georesursy, (1(29)), pp. 29-32. (In Russian).

4. Panyak, S. G., & German, V. V. (2011). Search for hydrocarbons using GORE technique in Western Siberia. News of the Ural State Mining University, (25-26), pp. 48-52. (In Russian).

5. Panyak, S. G., Strashnenko, G. I., & Ermolaev, A. I. (2014). Possibilities of upgrading geochemical methods of searches of oil and gas fields. News of the higher institutions. Mining journal, (1), pp. 141-145. (In Russian).

6. Zorkin, L. M. (2008). Genesis of gases of the underground hydrosphere in connection with prospecting of hydrocarbon accumulations. Geoinformatika, (1), pp. 45-53. (In Russian).

7. Min'ko, O. I. (1991). Generatsiya uglevodorodnogo gaza pochvennym pokrovom planety. Geochemistry International, (1), pp. 3-15. (In Russian).

8. Rivkina, E., Shcherbakova, V., Laurinavichius, K., Petrovskaya, L., Krivushin, K., Kraev, G.,… Gilichinsky, D. (2007). Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiology Ecology, 61(1), pp. 1-15. (In English). DOI: 10.1111/j.1574-6941.2007.00315.x

9. Bryanskaya, A. V., Uvarova, Yu. E., Slynko, N. M., Demidov, E. A., Rozanov, A. S., & Peltek, S. E. (2014). Theoretical and practical issues of biological oxidation of hydrocarbons by microorganisms. Vavilov journal of genetics and breeding, 18(4-2), pp. 999-1012. (In Russian).

10. Putilina, V. S., Galickaja, I. V., & Juganova, T. I. (2018). Processes of biochemical degradation of oil hydrocarbons in the unsaturated zone and groundwater. Geoekologiya. Inzheneraya geologiya, gidrogeologiya,geokriologiya, (3), рр. 43-55. (In Russian). DOI: 10.7868/S0869780318030055

11. Rojo, F. (2009). Degradation of alkans by bacteria. Environmental Microbiology, 11(10), pp. 2477-2490. (In English). DOI: 10.1111/j.1462-2920.2009.01948.x

12. Plet, C., Siegel, C., Wolterning, M., Noble, R., Pagès, A., Thorne,… Anand, R. (2021). Sulfur and CO 2 gases emitted during weathering of sulfides: Role of microbial activity and implications to exploration through cover. Ore Geology Reviews, (134), pp. 104-167. (In English). DOI: 10.1016/j.oregeorev.2021.104167

13. Lal, R. (2019). Accelerated Soil erosion as a source of atmospheric CO2 . Soil and Tillage Research, 188, pр. 35-40. (In English). DOI: 10.1016/j.still.2018.02.001

14. Pankina R. G., & Mekhtieva, V. L. (1983). Proiskhozhdenie kislykh gazov (N2 S i CO2 ) i prognozirovanie ikh soderzhaniya v uglevodorodnykh skopleniyakh. Moscow, 54 p. (In Russian).

15. Pavlikova, T. A. (2004). Degradatsiya nefti assotsiatsiey aerobnykh uglevodorodokislyashchikh mikroorganizmov v razlichnykh tipakh pochv. Diss. … kand. biol. nauk. Moscow, 132 p. (In Russian).

16. Kurchatova, A. N., & Rogov, V. V. (2018). Formation of geochemical anomalies in hydrocarbon migration in the permafrost zone of Western Siberia. Ice and Snow, (2), рр. 199-212. (In Russian). DOI: 10.15356/2076-6734-2018-2-199-212

17. Fedoseev, S. M. (2006). Gazovye gidraty kriolitozony. Nauka i obrazovanie, (1(41)), рр. 22-27. (In Russian).

18. Istomin,V. A., Kvon, V. G., & Rodzhers, P. M. (2008). Osobennosti kinetiki razlozheniya i ekologiya gazogidratov. Gas Industry, (S(619)), рр. 41-47. (In Russian)

19. Khimenkov, A. N., Koshurnikov, A. V., Karpenko, F. S., Kutergin, V. N., Gagarin, V. E., & Sobolev, P. A. (2019). On the filtration of gases in permafrost formations in light of the problem of degassing lithosphere of the Earth and formation of natural explosive processes in the cryolithozone. Arktika i Antarktika, (3), рр. 16-38. (In Russian). DOI: 10.7256/2453-8922.2019.3.29627

20. Vlasov, V. A. (2016). Simplified diffusion model of gas hydrate formation from ice. Heat Mass Transfer, 52(3), pр. 531-537. (In English). DOI: 10.1007/s00231-015-1575-6


Review

For citations:


Zavatsky M.D., Nezhdanov A.A., Kurchatova A.N. Features of the composition of gas sorbed in the rocks of the upper part of the sedimentary cover section. Oil and Gas Studies. 2021;(6):23-35. (In Russ.) https://doi.org/10.31660/0445-01108-2021-6-23-35

Views: 385


ISSN 0445-0108 (Print)